Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6179
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZarandi, Mohammad Hossein Fazel-
dc.contributor.authorGamasaee, R.-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:35:11Z-
dc.date.available2021-09-11T15:35:11Z-
dc.date.issued2012-
dc.identifier.issn0020-0255-
dc.identifier.issn1872-6291-
dc.identifier.urihttps://doi.org/10.1016/j.ins.2011.10.015-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6179-
dc.description.abstractThis paper proposes a new type-2 fuzzy c-regression clustering algorithm for the structure identification phase of Takagi-Sugeno (T-S) systems. We present uncertainties with fuzzifier parameter "m'. In order to identify the parameters of interval type-2 fuzzy sets, two fuzzifiers 'm(1)" and "m(2)" are used. Then, by utilizing these two fuzzifiers in a fuzzy c-regression clustering algorithm, the interval type-2 fuzzy membership functions are generated. The proposed model in this paper is an extended version of a type-1 FCRM algorithm [25], which is extended to an interval type-2 fuzzy model. The Gaussian Mixture model is used to create the partition matrix of the fuzzy c-regression clustering algorithm. Finally, in order to validate the proposed model, several numerical examples are presented. The model is tested on a real data set from a steel company in Canada. Our computational results show that our model is more effective for robustness and error reduction than type-1 NFCRM and the multiple-regression. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInformation Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIT2F c-regression clusteringen_US
dc.subjectStructure identificationen_US
dc.subjectGaussian mixtureen_US
dc.subjectWeighted least squareen_US
dc.subjectMultiple-regressionen_US
dc.subjectSteel industryen_US
dc.titleA Type-2 Fuzzy C-Regression Clustering Algorithm for Takagi-Sugeno System Identification and Its Application in the Steel Industryen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.volume187en_US
dc.identifier.startpage179en_US
dc.identifier.endpage203en_US
dc.identifier.wosWOS:000300201600012-
dc.identifier.scopus2-s2.0-84155165140-
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1016/j.ins.2011.10.015-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

49
checked on Jan 18, 2025

WEB OF SCIENCETM
Citations

54
checked on Aug 31, 2024

Page view(s)

42
checked on Jan 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.