Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6182
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gamasaee, R. | - |
dc.contributor.author | Zarandi, Mohammad Hossein Fazel | - |
dc.contributor.author | Türkşen, İsmail Burhan | - |
dc.date.accessioned | 2021-09-11T15:35:12Z | - |
dc.date.available | 2021-09-11T15:35:12Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Annual Meeting of the North-American-Fuzzy-Information-Processing-Society (NAFIPS) -- AUG 17-19, 2015 -- Digipen, WA | en_US |
dc.identifier.isbn | 978-1-4673-7248-0 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6182 | - |
dc.description.abstract | In this paper, a new type-2 fuzzy intelligent agent system (T2F-IAS) for reducing bullwhip effect in a supply chain is proposed. This system uses a special kind of sparse kernel machines, called support vector regression, for forecasting future demands of each echelon in a supply chain. The T2F-IAS includes a data collector agent and a rule generator agent. A type-2 fuzzy c-regression clustering model is employed in the rule generator agent for generating the most proper rules. This agent uses an interval type-2 fuzzy (IT2F) hybrid expert system for demand forecasting. Moreover, adaptive network based fuzzy inference system (ANFIS) is applied to learn parameters used in the agents. Thereafter, the results of the proposed T2F-IAS are compared with type-1 fuzzy intelligent agent system (T1F-IAS) and a method in literature for validating the proposed method. The results indicate that bullwhip effect and forecasting error are remarkably reduced by using the proposed T2F-IAS. | en_US |
dc.description.sponsorship | IEEE Advancing Tech Humanity, N Amer Fuzzy Informat Proc Soc | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2015 Annual Meeting of The North American Fuzzy Information Processing Society Digipen Nafips 2015 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Type-2 fuzzy | en_US |
dc.subject | Intelligent agent system | en_US |
dc.subject | Sparse kernel machines | en_US |
dc.subject | Bullwhip effect | en_US |
dc.subject | Demand forecasting | en_US |
dc.title | A Type-2 Fuzzy Intelligent Agent Based on Sparse Kernel Machines for Reducing Bullwhip Effect in Supply Chain | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.identifier.wos | WOS:000380566200084 | - |
dc.institutionauthor | Türkşen, İsmail Burhan | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | Annual Meeting of the North-American-Fuzzy-Information-Processing-Society (NAFIPS) | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 02.4. Department of Industrial Engineering | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.