Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6182
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGamasaee, R.-
dc.contributor.authorZarandi, Mohammad Hossein Fazel-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:35:12Z-
dc.date.available2021-09-11T15:35:12Z-
dc.date.issued2015-
dc.identifier.citationAnnual Meeting of the North-American-Fuzzy-Information-Processing-Society (NAFIPS) -- AUG 17-19, 2015 -- Digipen, WAen_US
dc.identifier.isbn978-1-4673-7248-0-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6182-
dc.description.abstractIn this paper, a new type-2 fuzzy intelligent agent system (T2F-IAS) for reducing bullwhip effect in a supply chain is proposed. This system uses a special kind of sparse kernel machines, called support vector regression, for forecasting future demands of each echelon in a supply chain. The T2F-IAS includes a data collector agent and a rule generator agent. A type-2 fuzzy c-regression clustering model is employed in the rule generator agent for generating the most proper rules. This agent uses an interval type-2 fuzzy (IT2F) hybrid expert system for demand forecasting. Moreover, adaptive network based fuzzy inference system (ANFIS) is applied to learn parameters used in the agents. Thereafter, the results of the proposed T2F-IAS are compared with type-1 fuzzy intelligent agent system (T1F-IAS) and a method in literature for validating the proposed method. The results indicate that bullwhip effect and forecasting error are remarkably reduced by using the proposed T2F-IAS.en_US
dc.description.sponsorshipIEEE Advancing Tech Humanity, N Amer Fuzzy Informat Proc Socen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2015 Annual Meeting of The North American Fuzzy Information Processing Society Digipen Nafips 2015en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectType-2 fuzzyen_US
dc.subjectIntelligent agent systemen_US
dc.subjectSparse kernel machinesen_US
dc.subjectBullwhip effecten_US
dc.subjectDemand forecastingen_US
dc.titleA Type-2 Fuzzy Intelligent Agent Based on Sparse Kernel Machines for Reducing Bullwhip Effect in Supply Chainen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000380566200084-
dc.institutionauthorTürkşen, İsmail Burhan-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceAnnual Meeting of the North-American-Fuzzy-Information-Processing-Society (NAFIPS)en_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

82
checked on Jan 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.