Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6218
Title: | All-Dielectric Periodic Media Engineered for Slow Light Studies | Authors: | Kurt, Hamza | Keywords: | Photonic band gap materials integrated optics optical wave gides optical design optical couplers |
Publisher: | World Scientific Publ Co Pte Ltd | Abstract: | The paper presents various novel approaches to implementing slow light media by manipulating the group velocity via dispersion engineering of guided modes. Light is confined and then linked with a low group velocity inside a photonic crystal waveguide (PCW) and at the PC-air interface. We discuss both basic and engineered slow light waveguide structures. The structural changes in PCs greatly modify the spectral characteristics of the dispersion curves. The search for flat bands gives rise to various strategies for slowing the optical pulses. An appropriate and commonly adopted figure of merit (FOM) is accepted to quantify and characterize the performance of the designed slow light devices. The trade-off relationship between the group index and the bandwidth is highlighted. Efficient excitation of slow modes demands the design of additional interfaces as couplers between the input waveguide and slow mode guide structure. Other challenges of slow light studies, such as various loss sources, are mentioned. Finally, the potential applications of slow light are outlined, and remarks on future directions are presented. | URI: | https://doi.org/10.1142/S021797921330020X https://hdl.handle.net/20.500.11851/6218 |
ISSN: | 0217-9792 1793-6578 |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
9
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
9
checked on Aug 31, 2024
Page view(s)
92
checked on Nov 11, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.