Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6261
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:35:31Z-
dc.date.available2021-09-11T15:35:31Z-
dc.date.issued2009en_US
dc.identifier.issn1051-2004-
dc.identifier.issn1095-4333-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2008.07.007-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6261-
dc.description.abstractThe implementation of recurrent neural network (RNN) employing eigenvector methods is presented for classification of electroencephalogram (EEG) signals. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Because of the importance of making the right decision, the present work is carried out for searching better classification procedures for the EEG signals. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the EEG signals by the combination of eigenvector methods and the RNN. The present research demonstrated that the power levels of the power spectral density (PSD) estimates obtained by the eigenvector methods are the features which well represent the EEG signals and the RNN trained on these features achieved high classification accuracies. (c) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofDigital Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRecurrent neural networksen_US
dc.subjectEigenvector methodsen_US
dc.subjectElectroencephalogram (EEG) signalsden_US
dc.titleAnalysis of Eeg Signals by Implementing Eigenvector Methods/Recurrent Neural Networksen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume19en_US
dc.identifier.issue1en_US
dc.identifier.startpage134en_US
dc.identifier.endpage143en_US
dc.identifier.wosWOS:000261723700013en_US
dc.identifier.scopus2-s2.0-56549122554en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.dsp.2008.07.007-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

48
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

55
checked on Aug 31, 2024

Page view(s)

74
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.