Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6273
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.contributor.authorCvetkovic, Dean-
dc.contributor.authorHolland, Gerard-
dc.contributor.authorCosic, Irena-
dc.date.accessioned2021-09-11T15:35:34Z-
dc.date.available2021-09-11T15:35:34Z-
dc.date.issued2010en_US
dc.identifier.issn0957-4174-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.12.065-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6273-
dc.description.abstractThis paper presents the application of least squares support vector machines (LS-SVMs) for automatic detection of alterations in the human electroencephalogram (EEG) activities during hypopnoea episodes. The obstructive sleep apnoea hypopnoea syndrome (OSAH) means "cessation of breath" during the sleep hours and the sufferers often experience related changes in the electrical activity of the brain and heart. Decision making was performed in two stages: feature extraction by computation of autoregressive (AR) coefficients and classification by the LS-SVMs. The EEG signals (pre and during hypopnoea) from three electrodes (C3, C4 and O2) were used as input patterns of the LS-SVMs. The performance of the LS-SVMs was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed LS-SVM has potential in detecting changes in the human EEG activity due to hypopnoea episodes. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectAR coefficientsen_US
dc.subjectSleep apnoea hypopnoeaen_US
dc.subjectElectroencephalogram (EEG)en_US
dc.titleAnalysis of Sleep Eeg Activity During Hypopnoea Episodes by Least Squares Support Vector Machine Employing Ar Coefficientsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume37en_US
dc.identifier.issue6en_US
dc.identifier.startpage4463en_US
dc.identifier.endpage4467en_US
dc.authorid0000-0002-4218-7390-
dc.identifier.wosWOS:000276532600048en_US
dc.identifier.scopus2-s2.0-77249090169en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.eswa.2009.12.065-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

10
checked on Aug 31, 2024

Page view(s)

78
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.