Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6273
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Übeyli, Elif Derya | - |
dc.contributor.author | Cvetkovic, Dean | - |
dc.contributor.author | Holland, Gerard | - |
dc.contributor.author | Cosic, Irena | - |
dc.date.accessioned | 2021-09-11T15:35:34Z | - |
dc.date.available | 2021-09-11T15:35:34Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2009.12.065 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6273 | - |
dc.description.abstract | This paper presents the application of least squares support vector machines (LS-SVMs) for automatic detection of alterations in the human electroencephalogram (EEG) activities during hypopnoea episodes. The obstructive sleep apnoea hypopnoea syndrome (OSAH) means "cessation of breath" during the sleep hours and the sufferers often experience related changes in the electrical activity of the brain and heart. Decision making was performed in two stages: feature extraction by computation of autoregressive (AR) coefficients and classification by the LS-SVMs. The EEG signals (pre and during hypopnoea) from three electrodes (C3, C4 and O2) were used as input patterns of the LS-SVMs. The performance of the LS-SVMs was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed LS-SVM has potential in detecting changes in the human EEG activity due to hypopnoea episodes. (C) 2009 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Expert Systems With Applications | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Least squares support vector machines | en_US |
dc.subject | AR coefficients | en_US |
dc.subject | Sleep apnoea hypopnoea | en_US |
dc.subject | Electroencephalogram (EEG) | en_US |
dc.title | Analysis of Sleep Eeg Activity During Hypopnoea Episodes by Least Squares Support Vector Machine Employing Ar Coefficients | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 37 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.startpage | 4463 | en_US |
dc.identifier.endpage | 4467 | en_US |
dc.authorid | 0000-0002-4218-7390 | - |
dc.identifier.wos | WOS:000276532600048 | en_US |
dc.identifier.scopus | 2-s2.0-77249090169 | en_US |
dc.institutionauthor | Übeyli, Elif Derya | - |
dc.identifier.doi | 10.1016/j.eswa.2009.12.065 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
10
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
10
checked on Aug 31, 2024
Page view(s)
78
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.