Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6334
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Übeyli, Elif Derya | - |
dc.date.accessioned | 2021-09-11T15:35:53Z | - |
dc.date.available | 2021-09-11T15:35:53Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2008.12.019 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6334 | - |
dc.description.abstract | This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for automatic detection of electroencephalographic changes. Decision making was performed in two stages: feature extraction by computation of Lyapunov exponents and classification by the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. Five types of electroencephalogram (EEG) signals were classified by five ANFIS classifiers. To improve diagnostic accuracy, the sixth ANFIS classifier (combining ANFIS) was trained using the outputs of the five ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the saliency of features on classification of the EEG signals were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the EEG signals. (C) 2008 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Expert Systems With Applications | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Adaptive neuro-fuzzy inference system (ANFIS) | en_US |
dc.subject | Fuzzy logic | en_US |
dc.subject | Lyapunov exponent | en_US |
dc.subject | Electroencephalogram (EEG) signals | en_US |
dc.title | Automatic detection of electroencephalographic changes using adaptive neuro-fuzzy inference system employing Lyapunov exponents | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 36 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 9031 | en_US |
dc.identifier.endpage | 9038 | en_US |
dc.identifier.wos | WOS:000264782800036 | en_US |
dc.identifier.scopus | 2-s2.0-60849087328 | en_US |
dc.institutionauthor | Übeyli, Elif Derya | - |
dc.identifier.doi | 10.1016/j.eswa.2008.12.019 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
29
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
23
checked on Aug 31, 2024
Page view(s)
58
checked on Nov 11, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.