Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6340
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeyfioğlu, Mehmet Saygın-
dc.contributor.authorBayındır, Şeyma-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.date.accessioned2021-09-11T15:35:55Z-
dc.date.available2021-09-11T15:35:55Z-
dc.date.issued2015en_US
dc.identifier.citationIEEE International Geoscience and Remote Sensing Symposium (IGARSS) -- JUL 26-31, 2015 -- Milan, ITALYen_US
dc.identifier.isbn978-1-4799-7929-5-
dc.identifier.issn2153-6996-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6340-
dc.description.abstractThere are two main approaches to hyperspectral target detection: anomaly detection techniques, which detect outliers substantially different from the background, and spectral signature techniques, which require as an input a user-defined target signature. Oftentimes, however, the target signature may not be known, or there may be unexpected targets in the image, which are unknown but still of interest. As a result, algorithms that can automatically extract potential target signatures without any a priori knowledge are of great interest. In this work, a fusion-based algorithm is developed that takes advantage of both spatial and spectral information to automatically extract the spectral signatures of potential targets of interest. The performance of several target detection algorithms is compared for both the proposed spatially-spectrally estimated (SSE) target signature and the initial target signature used by the Automatic Target Detection and Classification Algorithm (ATDCA). It is shown that the SSE signature leads to improved automatic spectral target recognition (ATSR) performance than the ATDCA algorithm for the test conducted on the AVIRIS Indian Pines dataset.en_US
dc.description.sponsorshipIEEEen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2015 IEEE International Geoscience And Remote Sensing Symposium (Igarss)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecthyperspectral target detectionen_US
dc.subjectanomaly detectionen_US
dc.subjectspectral target recognitionen_US
dc.titleAutomatic Spectral Signature Extraction for Hyperspectral Target Detectionen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIEEE International Symposium on Geoscience and Remote Sensing IGARSSen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage4452en_US
dc.identifier.endpage4455en_US
dc.authorid0000-0001-7487-9087-
dc.identifier.wosWOS:000371696704132en_US
dc.identifier.scopus2-s2.0-84962499299en_US
dc.institutionauthorGürbüz, Sevgi Zübeyde-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceIEEE International Geoscience and Remote Sensing Symposium (IGARSS)en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

60
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.