Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:36:14Z-
dc.date.available2021-09-11T15:36:14Z-
dc.date.issued2009en_US
dc.identifier.issn1051-2004-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2008.07.004-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6395-
dc.description.abstractThis paper illustrates the use of combined neural network model to guide model selection for classification of electroencephalogram (EEG) signals. The EEG signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first-level networks were implemented for the EEG signals classification using the statistical features as inputs. To improve diagnostic accuracy, the second-level networks were trained using the outputs of the first-level networks as input data. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified with the accuracy of 94.83% by the combined neural network. The combined neural network model achieved accuracy rates which were higher than that of the stand-alone neural network model. (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofDigital Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCombined neural network modelen_US
dc.subjectEEG signals classificationen_US
dc.subjectDiagnostic accuracyen_US
dc.subjectDiscrete wavelet transformen_US
dc.titleCombined neural network model employing wavelet coefficients for EEG signals classificationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume19en_US
dc.identifier.issue2en_US
dc.identifier.startpage297en_US
dc.identifier.endpage308en_US
dc.identifier.wosWOS:000263213700013en_US
dc.identifier.scopus2-s2.0-58549111381en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.dsp.2008.07.004-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

224
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

180
checked on Aug 31, 2024

Page view(s)

48
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.