Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6398
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:36:15Z-
dc.date.available2021-09-11T15:36:15Z-
dc.date.issued2007en_US
dc.identifier.issn0169-2607-
dc.identifier.issn1872-7565-
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2007.01.006-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6398-
dc.description.abstractIn this paper, the multiclass support vector machines (SVMs) with the error correcting output codes (ECOC) were presented for detecting variabilities of the multiclass Doppler ultrasound signals. The ophthalmic arterial (OA) Doppler signals were recorded from healthy subjects, subjects suffering from CA stenosis, subjects suffering from ocular Behcet disease. The internal carotid arterial (ICA) Doppler signals were recorded from healthy subjects, subjects suffering from ICA stenosis, subjects suffering from ICA occlusion. Methods of combining multiple classifiers with diverse features are viewed as a general problem in various application areas of pattern recognition. Because of the importance of making the right decision, better classification procedures for Doppler ultrasound signals are searched. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the SVMs trained on the extracted features. The research demonstrated that the multiclass SVMs trained on extracted features achieved high accuracy rates. (c) 2007 Elsevier Ireland Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ireland Ltden_US
dc.relation.ispartofComputer Methods And Programs In Biomedicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDoppler ultrasound signalsen_US
dc.subjecteigenvector methodsen_US
dc.subjectmulticlass support vector machineen_US
dc.subject(SVM)en_US
dc.titleCombining eigenvector methods and support vector machines for detecting variability of Doppler ultrasound signalsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume86en_US
dc.identifier.issue2en_US
dc.identifier.startpage181en_US
dc.identifier.endpage190en_US
dc.identifier.wosWOS:000246266300009en_US
dc.identifier.scopus2-s2.0-34047247923en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid17289211en_US
dc.identifier.doi10.1016/j.cmpb.2007.01.006-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

11
checked on Aug 31, 2024

Page view(s)

60
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.