Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6399
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:36:16Z-
dc.date.available2021-09-11T15:36:16Z-
dc.date.issued2009en_US
dc.identifier.issn1051-2004-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2008.09.002-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6399-
dc.description.abstractThe purpose of this study is to evaluate the accuracy of the recurrent neural networks (RNNs) trained with Levenberg-Marquardt algorithm on the electrocardiogram (ECG) beats. Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, atrial fibrillation beat) obtained from the Physiobank database were analyzed. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the RNN trained on the extracted features. The RNNs were implemented for classification of the ECG beats using the statistical features as inputs. The ability of designed and trained Elman RNNs, combined with eigenvector methods, were explored to classify the ECG beats. The classification results demonstrated that the combined eigenvector methods/RNN approach can be useful in analyzing the ECG beats. (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofDigital Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRecurrent neural networksen_US
dc.subjectLevenberg-Marquardt algorithmen_US
dc.subjectEigenvector methodsen_US
dc.subjectElectrocardiogram (ECG) beatsen_US
dc.titleCombining recurrent neural networks with eigenvector methods for classification of ECG beatsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume19en_US
dc.identifier.issue2en_US
dc.identifier.startpage320en_US
dc.identifier.endpage329en_US
dc.identifier.wosWOS:000263213700015en_US
dc.identifier.scopus2-s2.0-58549090877en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.dsp.2008.09.002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

92
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

89
checked on Aug 31, 2024

Page view(s)

76
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.