Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6424
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gürbüz, Ali Cafer | - |
dc.contributor.author | McClellan, James H. | - |
dc.contributor.author | Scott, Waymond R., Jr. | - |
dc.date.accessioned | 2021-09-11T15:36:25Z | - |
dc.date.available | 2021-09-11T15:36:25Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.issn | 0165-1684 | - |
dc.identifier.issn | 1872-7557 | - |
dc.identifier.uri | https://doi.org/10.1016/j.sigpro.2009.03.030 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6424 | - |
dc.description.abstract | The theory of compressive sensing (CS) enables the reconstruction of sparse signals from a small set of non-adaptive linear measurements by solving a convex l(1) minimization problem. This paper presents a novel data acquisition system for wideband synthetic aperture imaging based on CS by exploiting sparseness of point-like targets in the image space. Instead of measuring sensor returns by sampling at the Nyquist rate, linear projections of the returned signals with random vectors are used as measurements. Furthermore, random sampling along the synthetic aperture scan points can be incorporated into the data acquisition scheme. The required number of CS measurements can be an order of magnitude less than uniform sampling of the space-time data. For the application of underground imaging with ground penetrating radars (GPR), typical images contain only a few targets. Thus we show, using simulated and experimental GPR data, that sparser target space images are obtained which are also less cluttered when compared to standard imaging results. (C) 2009 Elsevier B.V. All rights reserved. | en_US |
dc.description.sponsorship | ARO-MURIMURI; Multi-Modal Inverse Scattering for Detection and Classification of General Concealed Targets [DAAD19-02-1-0252] | en_US |
dc.description.sponsorship | This work supported by an ARO-MURI grant: "Multi-Modal Inverse Scattering for Detection and Classification of General Concealed Targets", under Contract number DAAD19-02-1-0252. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Signal Processing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Compressive sensing | en_US |
dc.subject | Synthetic aperture | en_US |
dc.subject | Ground penetrating radar (GPR) | en_US |
dc.subject | l(1) Minimization | en_US |
dc.subject | Subsurface imaging | en_US |
dc.subject | Sparsity | en_US |
dc.subject | Source localization | en_US |
dc.title | Compressive Sensing for Subsurface Imaging Using Ground Penetrating Radar | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 89 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.startpage | 1959 | en_US |
dc.identifier.endpage | 1972 | en_US |
dc.authorid | 0000-0001-8923-0299 | - |
dc.authorid | 0000-0001-8923-0299 | - |
dc.identifier.wos | WOS:000267692200010 | en_US |
dc.identifier.scopus | 2-s2.0-67349160257 | en_US |
dc.institutionauthor | Gürbüz, Ali Cafer | - |
dc.identifier.doi | 10.1016/j.sigpro.2009.03.030 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
113
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
101
checked on Aug 31, 2024
Page view(s)
50
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.