Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6476
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErol, Barış-
dc.contributor.authorSeyfioğlu, Mehmet Saygın-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.contributor.authorAmin, Moeness-
dc.date.accessioned2021-09-11T15:36:46Z-
dc.date.available2021-09-11T15:36:46Z-
dc.date.issued2018en_US
dc.identifier.citationConference on Radar Sensor Technology XXII -- APR 16-18, 2018 -- Orlando, FLen_US
dc.identifier.isbn978-1-5106-1778-0-
dc.identifier.issn0277-786X-
dc.identifier.issn1996-756X-
dc.identifier.urihttps://doi.org/10.1117/12.2304396-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6476-
dc.description.abstractAutomatic target recognition (ATR) using micro-Doppler analysis is a technique that has been a topic of great research over the past decade, with key applications to border control and security, perimeter defense, and force protection. Patterns in the movements of animals, humans, and drones can all be accomplished through classification of the target's micro-Doppler signature. Typically, classification is based on a set of fixed, pre-defined features extracted from the signature; however, such features can perform poorly under low signal-to-noise ratio (SNR), or when the number and similarity of classes increases. This paper proposes a novel set of data-driven frequency-warped cepstral coefficients (FWCC) for classification of micro-Doppler signatures, and compares performance with that attained from the data-driven features learned in deep neural networks (DNNs). FWCC features are computed by first filtering the discrete Fourier Transform (DFT) of the input signal using a frequency-warped filter bank, and then computing the discrete cosine transform (DCT) of the logarithm. The filter bank is optimized for radar using genetic algorithms (GA) to adjust the spacing, weight, and width of individual filters. For a 11-class case of human activity recognition, it is shown that the proposed data-driven FWCC features yield similar classification accuracy to that of DNNs, and thus provides interesting insights on the benefits of learned features.en_US
dc.description.sponsorshipSPIEen_US
dc.language.isoenen_US
dc.publisherSpie-Int Soc Optical Engineeringen_US
dc.relation.ispartofRadar Sensor Technology Xxiien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleData-Driven Cepstral and Neural Learning of Features for Robust Micro-Doppler Classificationen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesProceedings of SPIEen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume10633en_US
dc.authorid0000-0002-6977-8801-
dc.identifier.wosWOS:000454440300017en_US
dc.identifier.scopus2-s2.0-85050013246en_US
dc.institutionauthorGürbüz, Sevgi Zübeyde-
dc.identifier.doi10.1117/12.2304396-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceConference on Radar Sensor Technology XXIIen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

6
checked on Sep 21, 2024

Page view(s)

74
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.