Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6480
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2021-09-11T15:36:48Z-
dc.date.available2021-09-11T15:36:48Z-
dc.date.issued2008en_US
dc.identifier.citation7th International FLINS Conference on Applied Artificial Intelligence -- AUG 29-31, 2006 -- Genova, ITALYen_US
dc.identifier.issn1542-3980-
dc.identifier.issn1542-3999-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6480-
dc.description.abstractClustering is unsupervised process that classified a given set of objects into groups. The effectiveness of a clustering approach is mainly judged by its capability of producing clusters by maximizing both: within cluster similarity and between clusters dissimilarity. However, clustering algorithms expect the number of clusters be specified beforehand; this requires domain expertise. In this study, we demonstrate the effectiveness of different validity indices in guiding the process of a clustering approach that automatically determines the number of clusters before starting the actual clustering process. The target is achieved by first running a multi-objective genetic algorithm on a sample of the given dataset to find the set of alternative Solutions for a given range of possible number of clusters. Then, we apply cluster validity indexes to find the most appropriate number of clusters. We decide on running the genetic algorithm on a sample rather than the whole dataset simply because we want to benefit from the power of the genetic algorithm in automatically estimating the number of clusters, without being negatively affected by the poor performance of the genetic algorithm process as the dataset size increases. Finally, we run CURE to do the actual clustering of the whole dataset by feeding the determined number of clusters as input. The reported test results on two datasets demonstrate the applicability, efficiency and effectiveness of the proposed approach.en_US
dc.description.sponsorshipFLINSen_US
dc.language.isoenen_US
dc.publisherOld City Publishing Incen_US
dc.relation.ispartofJournal of Multiple-Valued Logic And Soft Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCUREen_US
dc.subjectclusteringen_US
dc.subjectdata miningen_US
dc.subjectgenetic algorithmen_US
dc.subjectmulti-objective optimizationen_US
dc.subjectvalidity analysisen_US
dc.titleDeciding on Number of Clusters by Multi-Objective Optimization and Validity Analysisen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume14en_US
dc.identifier.issue3-5en_US
dc.identifier.startpage457en_US
dc.identifier.endpage474en_US
dc.identifier.wosWOS:000256265400017en_US
dc.identifier.scopus2-s2.0-38849156992en_US
dc.institutionauthorÖzyer, Tansel-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference7th International FLINS Conference on Applied Artificial Intelligenceen_US
dc.identifier.scopusqualityQ3-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

6
checked on Sep 21, 2024

Page view(s)

78
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.