Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/650
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorÖzbayoğlu, Ahmet Murat-
dc.contributor.authorAltaş, Veli Mert-
dc.date.accessioned2019-03-01T08:03:52Z
dc.date.available2019-03-01T08:03:52Z
dc.date.issued2007-
dc.identifier.citationAltaş, V.(2007).Sondaj köpükleri özniteliklerinin görüntü işleme teknikleri ile çıkarımı ve yapay sinir ağları kullanarak veri analizi.Ankara : TOBB ETÜ Fen Bilimleri Enstitüsü.[Yayınlanmamış Yüksek Lisans Tezi]en_US
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/650-
dc.description.abstractKimyasal köpükler, bulundukları sıvıya göre dü ük yo unluk ve yüksek akmazlık gibi özelliklerinden dolayı, sıvı yoluyla ta ımanın önemli oldu u flotasyon, sondaj gibi endüstriyel i lemlerde ön plana çıkmaktadır. Ta ıyıcı sıvıya yardımcı olan köpüklerin boyut, biçim gibi özniteliklerinin ta ıma kapasitesini do rudan etkiledi i bugüne kadar yapılan ara tırmalarda ortaya konulmu tur. Yapılan çalı mada köpüklerin görsel özniteliklerini görüntü i leme metotlarıyla algılayacak ve YSA kullanılarak veri analizi yapabilecek bir model geli tirilmesi amaçlanmı tır. Bu amaca göre bölgesel e ikleme, Fourier Dönü üm üzerinden filtreleme gibi metotlar uygulanmı ve elde edilen sonuçlar aktarılmı tır. Modele göre görüntü üzerindeki noktaların potansiyel bir kabarcık merkezi olup olmadı ı geli tirilen bir algoritma ile kontrol edilmi tir. Elde edilen potansiyel köpüklere açısal minimum takip, a ırlık merkezi bulma ve sınır takibi gibi metotlar uygulanmı tır. Sınırları belirlenen köpüklerin yarıçap, alan, çevre gibi boyut ve biçim özellikleri çıkarılmı , kimyasal veriler ile birle tirilerek YSA kullanılarak veri analizi yapılmı tır. Yöntemde kullanılan tekniklerin algoritma açısından faydaları zamana dayalı olarak gösterilmi tir. Geli tirilen görüntü i leme modelinin, özellikle gürültülü köpük görüntülerinde literatürde yaygın olarak kullanılan yöntemlere göre daha ba arılı oldu u gözlemlenmi tir. YSA kullanılarak yapılan veri analizinin sonuçları incelenmi tir. Yapılan inceleme sonucu görüntü i leme metodu ile elde edilen köpük verilerinin YSA ile analizinin mümkün oldu u gösterilmi tiren_US
dc.description.abstractThe chemical foams have a significant role in industrial processes, which use liquid carrying such as flotation and drilling, because of their low density and high viscosity compared to the liquid that they are in. Up to date research showed that, the features of foam like shape and dimension have a direct effect on the carrying capacity. This study aimed to develop a model that perceive the features of foams with image processing techniques and make a data analysis using artifical neural networks. The methods like local thresholding and filtering from fourier transformation are applied and their results are shown according to this purpose. As to this model, a developed algorithm checks if the pixels on the image are a possible center of a potential froth or not. The techniques like tracing angular minimum, finding center of weight and contour tracing are applied to obtained potential froths. Radius, area, perimeter and other shape and dimension properties of the froths, whose borders are designated, are derived and combined with chemical data to perform a data analysis using artificial neural network.The algorithmic benefits of techniques used in the method, over time are shown. It is observed that, the developed image processing model is more successful than the techniques widely used in literature, especially with noisy froth images. The results of data analysis performed by artifical neural network are studied. Results show that it is possible to perform froth data analysis by neural networks using the extracted froth data by image processing techniques.en_US
dc.language.isotren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolen_US
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectElektrik ve Elektronik Mühendisliğien_US
dc.subjectElectrical and Electronics Engineeringen_US
dc.subjectPetrol ve Doğal Gaz Mühendisliğien_US
dc.subjectPetroleum and Natural Gas Engineeringen_US
dc.titleSondaj Köpükleri Özniteliklerinin Görüntü İşleme Teknikleri ile Çıkarımı ve Yapay Sinir Ağları Kullanarak Veri Analizien_US
dc.title.alternativeExtracting the Features of Drilling Foams With Image Processing Techniques and Data Analysis Using Artificial Neural Networksen_US
dc.typeMaster Thesisen_US
dcterms.rightsYazarına aittir / Belongs to author
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.publicationcategoryTezen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.grantfulltextopen-
item.openairetypeMaster Thesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Yüksek Lisans Tezleri / Computer Engineering Master Theses
Files in This Item:
File Description SizeFormat 
199631.pdfVeli Mert Altaş_Tez4.14 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

100
checked on Dec 23, 2024

Download(s)

118
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.