Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6520
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Budak, Fatma | - |
dc.contributor.author | Übeyli, Elif Derya | - |
dc.date.accessioned | 2021-09-11T15:37:06Z | - |
dc.date.available | 2021-09-11T15:37:06Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.issn | 0148-5598 | - |
dc.identifier.issn | 1573-689X | - |
dc.identifier.uri | https://doi.org/10.1007/s10916-009-9344-z | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6520 | - |
dc.description.abstract | This paper presents the use of probabilistic neural networks (PNNs) for detection of resistivity for antibiotics (resistant and sensitive). The PNN is trained on the resistivity or sensitivity to the antibiotics of each record in the Salmonella database. Estimation of the whole parameter space for the PNN was performed by the maximum-likelihood (ML) estimation method. The expectation-maximization (EM) approach can help to achieve the ML estimation via iterative computation. Resistivity and sensitivity of the three antibiotics (ampicillin, chloramphenicol disks and trimethoprim-sulfamethoxazole) were classified with high accuracies by the PNN. The obtained results demonstrated the success of the PNN to help in detection of resistivity for antibiotics. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Journal of Medical Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Probabilistic neural network | en_US |
dc.subject | Expectation-Maximization algorithm | en_US |
dc.subject | Resistivity to antibiotics | en_US |
dc.subject | Sensitivity to antibiotics | en_US |
dc.subject | Classification accuracy | en_US |
dc.title | Detection of Resistivity for Antibiotics by Probabilistic Neural Networks | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 35 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 87 | en_US |
dc.identifier.endpage | 91 | en_US |
dc.identifier.wos | WOS:000286668200009 | en_US |
dc.institutionauthor | Übeyli, Elif Derya | - |
dc.identifier.pmid | 20703582 | en_US |
dc.identifier.doi | 10.1007/s10916-009-9344-z | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
12
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
13
checked on Sep 21, 2024
Page view(s)
52
checked on Nov 11, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.