Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6520
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBudak, Fatma-
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:37:06Z-
dc.date.available2021-09-11T15:37:06Z-
dc.date.issued2011en_US
dc.identifier.issn0148-5598-
dc.identifier.issn1573-689X-
dc.identifier.urihttps://doi.org/10.1007/s10916-009-9344-z-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6520-
dc.description.abstractThis paper presents the use of probabilistic neural networks (PNNs) for detection of resistivity for antibiotics (resistant and sensitive). The PNN is trained on the resistivity or sensitivity to the antibiotics of each record in the Salmonella database. Estimation of the whole parameter space for the PNN was performed by the maximum-likelihood (ML) estimation method. The expectation-maximization (EM) approach can help to achieve the ML estimation via iterative computation. Resistivity and sensitivity of the three antibiotics (ampicillin, chloramphenicol disks and trimethoprim-sulfamethoxazole) were classified with high accuracies by the PNN. The obtained results demonstrated the success of the PNN to help in detection of resistivity for antibiotics.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Medical Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectProbabilistic neural networken_US
dc.subjectExpectation-Maximization algorithmen_US
dc.subjectResistivity to antibioticsen_US
dc.subjectSensitivity to antibioticsen_US
dc.subjectClassification accuracyen_US
dc.titleDetection of Resistivity for Antibiotics by Probabilistic Neural Networksen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume35en_US
dc.identifier.issue1en_US
dc.identifier.startpage87en_US
dc.identifier.endpage91en_US
dc.identifier.wosWOS:000286668200009en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid20703582en_US
dc.identifier.doi10.1007/s10916-009-9344-z-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

12
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

13
checked on Sep 21, 2024

Page view(s)

52
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.