Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6544
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Uncu, Özge | - |
dc.contributor.author | Türkşen, İsmail Burhan | - |
dc.date.accessioned | 2021-09-11T15:37:17Z | - |
dc.date.available | 2021-09-11T15:37:17Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.issn | 1063-6706 | - |
dc.identifier.issn | 1941-0034 | - |
dc.identifier.uri | https://doi.org/10.1109/TFUZZ.2006.889765 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6544 | - |
dc.description.abstract | -Fuzzy system modeling (FSM) is one of the most prominent tools that can be used to identify the behavior of highly nonlinear systems with uncertainty. Conventional FSM techniques utilize type 1 fuzzy sets in order to capture the uncertainty in the system. However, since type 1 fuzzy sets express the belongingness of a crisp value x' of a base variable x in a fuzzy set A by a crisp membership value mu(A)(x'), they cannot fully capture the uncertainties due to imprecision in identifying membership functions. Higher types of fuzzy sets can be a remedy to address this issue. Since, the computational complexity of operations on fuzzy sets are increasing with the increasing type of the fuzzy set, the use-of type 2 fuzzy sets and linguistic logical connectives drew a considerable amount of attention in the realm of fuzzy system modeling in the last two decades. In this paper, we propose a black-box methodology that can identify robust type 2. Takagi-Sugeno, Mizumoto and Linguistic fuzzy system models with high predictive power. One of the essential problems of type 2 fuzzy system models is computational complexity. In order to remedy this problem, discrete interval valued type 2 fuzzy system models are proposed with type reduction. In the proposed fuzzy system modeling methods, fuzzy C-means (FCM) clustering algorithm is used in order to identify the system structure. The proposed discrete interval valued type 2 fuzzy system models are generated by a learning parameter of FCM, known as the level of membership, and its variation over a specific set of values which generate the uncertainty associated with the system structure. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | IEEE Transactions On Fuzzy Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | fuzzy system models | en_US |
dc.subject | fuzzy inference systems | en_US |
dc.subject | fuzzy clustering | en_US |
dc.subject | type 2 fuzzy system models | en_US |
dc.subject | level of fuzziness | en_US |
dc.title | Discrete Interval Type 2 Fuzzy System Models Using Uncertainty in Learning Parameters | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 15 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 90 | en_US |
dc.identifier.endpage | 106 | en_US |
dc.identifier.wos | WOS:000244803400008 | en_US |
dc.identifier.scopus | 2-s2.0-33947365579 | en_US |
dc.institutionauthor | Türkşen, İsmail Burhan | - |
dc.identifier.doi | 10.1109/TFUZZ.2006.889765 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
92
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
86
checked on Sep 21, 2024
Page view(s)
46
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.