Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6550
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Übeyli, Elif Derya | - |
dc.date.accessioned | 2021-09-11T15:37:20Z | - |
dc.date.available | 2021-09-11T15:37:20Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.issn | 0959-2989 | - |
dc.identifier.issn | 1878-3619 | - |
dc.identifier.uri | https://doi.org/10.3233/BME-2008-0509 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6550 | - |
dc.description.abstract | The automated diagnostic systems employing diverse and composite features for electrocardiogram (ECG) signals were analyzed and their accuracies were determined. Because of the importance of making the right decision, classification procedures classifying the ECG signals with high accuracy were investigated. The classification accuracies of multilayer perceptron neural network (MLPNN), recurrent neural network (RNN), and mixture of experts (ME) trained on composite features and modified mixture of experts (MME) trained on diverse features were compared. The inputs of these automated diagnostic systems were composed of diverse or composite features (wavelet coefficients and power levels of the power spectral density estimates obtained by the eigenvector methods) and were chosen according to the network structures. The conclusions of this study demonstrated that the MME trained on diverse features achieved accuracy rates which were higher than that of the other automated diagnostic systems trained on composite features. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ios Press | en_US |
dc.relation.ispartof | Bio-Medical Materials And Engineering | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | diverse features | en_US |
dc.subject | composite features | en_US |
dc.subject | electrocardiogram (ECG) signals | en_US |
dc.subject | automated diagnostic systems | en_US |
dc.subject | wavelet coefficients | en_US |
dc.subject | eigenvector methods | en_US |
dc.title | Diverse and composite features for ECG signals processing | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 18 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 61 | en_US |
dc.identifier.endpage | 72 | en_US |
dc.identifier.wos | WOS:000256526400002 | en_US |
dc.identifier.scopus | 2-s2.0-46649121531 | en_US |
dc.institutionauthor | Übeyli, Elif Derya | - |
dc.identifier.pmid | 18408257 | en_US |
dc.identifier.doi | 10.3233/BME-2008-0509 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
1
checked on Sep 21, 2024
Page view(s)
44
checked on Nov 11, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.