Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6550
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:37:20Z-
dc.date.available2021-09-11T15:37:20Z-
dc.date.issued2008en_US
dc.identifier.issn0959-2989-
dc.identifier.issn1878-3619-
dc.identifier.urihttps://doi.org/10.3233/BME-2008-0509-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6550-
dc.description.abstractThe automated diagnostic systems employing diverse and composite features for electrocardiogram (ECG) signals were analyzed and their accuracies were determined. Because of the importance of making the right decision, classification procedures classifying the ECG signals with high accuracy were investigated. The classification accuracies of multilayer perceptron neural network (MLPNN), recurrent neural network (RNN), and mixture of experts (ME) trained on composite features and modified mixture of experts (MME) trained on diverse features were compared. The inputs of these automated diagnostic systems were composed of diverse or composite features (wavelet coefficients and power levels of the power spectral density estimates obtained by the eigenvector methods) and were chosen according to the network structures. The conclusions of this study demonstrated that the MME trained on diverse features achieved accuracy rates which were higher than that of the other automated diagnostic systems trained on composite features.en_US
dc.language.isoenen_US
dc.publisherIos Pressen_US
dc.relation.ispartofBio-Medical Materials And Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdiverse featuresen_US
dc.subjectcomposite featuresen_US
dc.subjectelectrocardiogram (ECG) signalsen_US
dc.subjectautomated diagnostic systemsen_US
dc.subjectwavelet coefficientsen_US
dc.subjecteigenvector methodsen_US
dc.titleDiverse and composite features for ECG signals processingen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume18en_US
dc.identifier.issue2en_US
dc.identifier.startpage61en_US
dc.identifier.endpage72en_US
dc.identifier.wosWOS:000256526400002en_US
dc.identifier.scopus2-s2.0-46649121531en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid18408257en_US
dc.identifier.doi10.3233/BME-2008-0509-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Sep 21, 2024

Page view(s)

44
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.