Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6552
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeyfioğlu, Mehmet Saygın-
dc.contributor.authorErol, Barış-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.contributor.authorAmin, Moeness G.-
dc.date.accessioned2021-09-11T15:37:21Z-
dc.date.available2021-09-11T15:37:21Z-
dc.date.issued2018en_US
dc.identifier.citationIEEE Radar Conference -- APR 23-27, 2018 -- Oklahoma City, OKen_US
dc.identifier.isbn978-1-5386-4167-5-
dc.identifier.issn1097-5764-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6552-
dc.description.abstractA key challenge in radar micro-Doppler classification is the difficulty in obtaining a large amount of training data due to costs in time and human resources. Small training datasets limit the depth of deep neural networks (DNNs), and, hence, attainable classification accuracy. In this work, a novel method for diversifying Kinect-based motion capture (MOCAP) simulations of human micro-Doppler to span a wider range of potential observations, e.g. speed, body size, and style, is proposed. By applying three transformations, a small set of MOCAP measurements is expanded to generate a large training dataset for network initialization of a 30-layer deep residual neural network. Results show that the proposed training methodology and residual DNN yield improved bottleneck feature performance and the highest overall classification accuracy among other DNN architectures, including transfer learning from the 1.5 million sample ImageNet database.en_US
dc.description.sponsorshipIEEE, IEEE Instrumentat Measurement Soc, Geoscience & Remote sensing soc, Aerospace & Electronic Syst Socen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2018 IEEE Radar Conference (Radarconf18)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleDiversified Radar Micro-Doppler Simulations as Training Data for Deep Residual Neural Networksen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIEEE Radar Conferenceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage612en_US
dc.identifier.endpage617en_US
dc.authorid0000-0002-6977-8801-
dc.identifier.wosWOS:000442172700109en_US
dc.identifier.scopus2-s2.0-85049996165en_US
dc.institutionauthorGürbüz, Sevgi Zübeyde-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceIEEE Radar Conferenceen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

24
checked on Sep 21, 2024

Page view(s)

76
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.