Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6552
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seyfioğlu, Mehmet Saygın | - |
dc.contributor.author | Erol, Barış | - |
dc.contributor.author | Gürbüz, Sevgi Zübeyde | - |
dc.contributor.author | Amin, Moeness G. | - |
dc.date.accessioned | 2021-09-11T15:37:21Z | - |
dc.date.available | 2021-09-11T15:37:21Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.citation | IEEE Radar Conference -- APR 23-27, 2018 -- Oklahoma City, OK | en_US |
dc.identifier.isbn | 978-1-5386-4167-5 | - |
dc.identifier.issn | 1097-5764 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6552 | - |
dc.description.abstract | A key challenge in radar micro-Doppler classification is the difficulty in obtaining a large amount of training data due to costs in time and human resources. Small training datasets limit the depth of deep neural networks (DNNs), and, hence, attainable classification accuracy. In this work, a novel method for diversifying Kinect-based motion capture (MOCAP) simulations of human micro-Doppler to span a wider range of potential observations, e.g. speed, body size, and style, is proposed. By applying three transformations, a small set of MOCAP measurements is expanded to generate a large training dataset for network initialization of a 30-layer deep residual neural network. Results show that the proposed training methodology and residual DNN yield improved bottleneck feature performance and the highest overall classification accuracy among other DNN architectures, including transfer learning from the 1.5 million sample ImageNet database. | en_US |
dc.description.sponsorship | IEEE, IEEE Instrumentat Measurement Soc, Geoscience & Remote sensing soc, Aerospace & Electronic Syst Soc | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2018 IEEE Radar Conference (Radarconf18) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | Diversified Radar Micro-Doppler Simulations as Training Data for Deep Residual Neural Networks | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | IEEE Radar Conference | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 612 | en_US |
dc.identifier.endpage | 617 | en_US |
dc.authorid | 0000-0002-6977-8801 | - |
dc.identifier.wos | WOS:000442172700109 | en_US |
dc.identifier.scopus | 2-s2.0-85049996165 | en_US |
dc.institutionauthor | Gürbüz, Sevgi Zübeyde | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | IEEE Radar Conference | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
24
checked on Sep 21, 2024
Page view(s)
76
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.