Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6574
Title: Dynamical modelling of the flow over a flapping wing using proper orthogonal decomposition and system identification techniques
Authors: Durmaz, Oğuz
Karaca, H. Deniz
Özen, G. Deniz
Kasnakoğlu, Coşku
Kurtuluş, D. Funda
Keywords: flapping wing
dynamical modelling
proper orthogonal decomposition
system identification
particle image velocimetry
computational fluid dynamics
unsteady flow
Publisher: Taylor & Francis Inc
Abstract: A systematic approach for the dynamical modelling of the unsteady flow over a flapping wing is developed, which is based on instantaneous velocity field data of the flow collected using particle image velocimetry (PIV) and computational fluid dynamics (CFD) simulations. The location and orientation of the airfoil is obtained by image processing and the airfoil is filled with proper velocity data. Proper orthogonal decomposition (POD) is applied to these post-processed images to compute POD modes and time coefficients, and a discrete-time state-space dynamical model is fit to the trajectories of the time coefficients using subspace system identification (N4SID). The procedure is verified using PIV and CFD data obtained from a pitching NACA0012 airfoil. The simulation results confirm that the dynamical model obtained from the method proposed can represent the flow dynamics with acceptable accuracy.
URI: https://doi.org/10.1080/13873954.2012.705859
https://hdl.handle.net/20.500.11851/6574
ISSN: 1387-3954
1744-5051
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

2
checked on Sep 21, 2024

Page view(s)

66
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.