Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6601
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞirin, Utku-
dc.contributor.authorErdoğdu, Utku-
dc.contributor.authorTan, Mehmet-
dc.contributor.authorPolat, Faruk-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2021-09-11T15:42:57Z-
dc.date.available2021-09-11T15:42:57Z-
dc.date.issued2012en_US
dc.identifier.citation11th IEEE International Conference on Machine Learning and Applications (ICMLA) -- DEC 12-15, 2012 -- Boca Raton, FLen_US
dc.identifier.isbn978-0-7695-4913-2; 978-1-4673-4651-1-
dc.identifier.urihttps://doi.org/10.1109/ICMLA.2012.22-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6601-
dc.description.abstractThe ever-growing need for gene-expression data analysis motivates studies in sample generation due to the lack of enough gene-expression data. It is common that there are thousands of genes but only tens or rarely hundreds of samples available. In this paper, we attempt to formulate the sample generation task as follows: first, building alternative Gene Regulatory Network (GRN) models; second, sampling data from each of them; and then filtering the generated samples using metrics that measure compatibility, diversity and coverage with respect to the original dataset. We constructed two alternative GRN models using Probabilistic Boolean Networks and Ordinary Differential Equations. We developed a multi-objective filtering mechanism based on the three metrics to assess the quality of the newly generated data. We presented a number of experiments to show effectiveness and applicability of the proposed multi-model framework.en_US
dc.description.sponsorshipIEEE, IEEE Comp Soc, AML&A, Florida Atlantic Univ, LexisNexisen_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [110E179]en_US
dc.description.sponsorshipThis work is partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 110E179.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2012 11Th International Conference On Machine Learning And Applications (Icmla 2012), Vol 1en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectgene expression dataen_US
dc.subjectsample generationen_US
dc.subjectmultiple perspectivesen_US
dc.subjectlearningen_US
dc.subjectgene regulation modelingen_US
dc.subjectprobabilistic boolean networksen_US
dc.subjectordinary differential equationsen_US
dc.titleEffective Enrichment of Gene Expression Data Setsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage76en_US
dc.identifier.endpage81en_US
dc.authorid0000-0003-0509-9153-
dc.authorid0000-0002-1741-0570-
dc.identifier.wosWOS:000427260500013en_US
dc.identifier.scopus2-s2.0-84873602387en_US
dc.institutionauthorTan, Mehmet-
dc.identifier.doi10.1109/ICMLA.2012.22-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference11th IEEE International Conference on Machine Learning and Applications (ICMLA)en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

2
checked on Sep 21, 2024

Page view(s)

76
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.