Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6613
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yılmaz, Muhammed | - |
dc.contributor.author | Özbayoğlu, Ahmet Murat | - |
dc.contributor.author | Tavlı, Bülent | - |
dc.date.accessioned | 2021-09-11T15:42:58Z | - |
dc.date.available | 2021-09-11T15:42:58Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 1022-0038 | - |
dc.identifier.issn | 1572-8196 | - |
dc.identifier.uri | https://doi.org/10.1007/s11276-021-02556-8 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6613 | - |
dc.description.abstract | The most important quality-of-service metric for wireless sensor networks (WSNs), arguably, is the lifetime. Estimating the network lifetime under optimal operation conditions can be done by casting the problem as a mixed integer programming (MIP) model and solving the problem instances to optimality. Yet, solution times of such models are excessively high. Therefore, it is not possible to work with large problem instances within an acceptable solution time. Adopting learning based algorithms has the ability to produce near-optimal results much more rapidly in comparison to MIP models. In this study, we propose a deep neural network (DNN) based model to determine the WSN lifetime near-optimally virtually instantly. The proposed model is able to predict the lifetime of a randomly deployed WSN over a predetermined area with an average accuracy more than 98.5%. An interesting outcome of the study is that the DNN based model is able to estimate the lifetime of WSNs with higher number of nodes successfully even if it is trained with a dataset obtained with lower number of nodes. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Wireless Networks | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Wireless sensor networks | en_US |
dc.subject | Network lifetime | en_US |
dc.subject | Lifetime prediction | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Deep neural networks | en_US |
dc.subject | Multi-layer perceptron | en_US |
dc.title | Efficient Computation of Wireless Sensor Network Lifetime Through Deep Neural Networks | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Artificial Intelligence Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.department | Fakülteler, Mühendislik Fakültesi, Yapay Zeka Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 27 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 2055 | en_US |
dc.identifier.endpage | 2065 | en_US |
dc.authorid | 0000-0001-7998-5735 | - |
dc.identifier.wos | WOS:000616893800001 | en_US |
dc.identifier.scopus | 2-s2.0-85100812662 | en_US |
dc.institutionauthor | Yılmaz, Muhammed | - |
dc.institutionauthor | Özbayoğlu, Ahmet Murat | - |
dc.institutionauthor | Tavlı, Bülent | - |
dc.identifier.doi | 10.1007/s11276-021-02556-8 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
5
checked on Sep 21, 2024
Page view(s)
400
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.