Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6619
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBayram, Sevinç-
dc.contributor.authorSencar, Hüsrev Taha-
dc.contributor.authorMemon, Nasir-
dc.date.accessioned2021-09-11T15:42:59Z-
dc.date.available2021-09-11T15:42:59Z-
dc.date.issued2012en_US
dc.identifier.issn1556-6013-
dc.identifier.issn1556-6021-
dc.identifier.urihttps://doi.org/10.1109/TIFS.2012.2192272-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6619-
dc.description.abstractIt is now established that photo-response nonuniformity noise pattern can be reliably used as a fingerprint to identify an image sensor. The large size and random nature of sensor fingerprints, however, make them inconvenient to store. Further, associated fingerprint matching method can be computationally expensive, especially for applications that involve large-scale databases. To address these limitations, we propose to represent sensor fingerprints in binary-quantized form. It is shown through both analytical study and simulations that the reduction in matching accuracy due to quantization is insignificant as compared to conventional approaches. Experiments on actual sensor fingerprint data are conducted to confirm that only a slight increase occurred in the probability of error and to demonstrate the computational efficacy of the approach.en_US
dc.description.sponsorshipAFOSRUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR) [FA9550-09-1-0087]en_US
dc.description.sponsorshipThis work was supported by the AFOSR under Grant FA9550-09-1-0087. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation there on. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of Air Force Office of Scientific Research or the U.S. Government. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Darko Kirovski.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Transactions On Information Forensics And Securityen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDatabase managementen_US
dc.subjectphoto-response nonuniformity (PRNU) noiseen_US
dc.subjectquantizationen_US
dc.titleEfficient Sensor Fingerprint Matching Through Fingerprint Binarizationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume7en_US
dc.identifier.issue4en_US
dc.identifier.startpage1404en_US
dc.identifier.endpage1413en_US
dc.identifier.wosWOS:000306520900025en_US
dc.identifier.scopus2-s2.0-84863933240en_US
dc.institutionauthorSencar, Hüsrev Taha-
dc.identifier.doi10.1109/TIFS.2012.2192272-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

50
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

51
checked on Sep 21, 2024

Page view(s)

78
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.