Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6620
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bayram, Sevinç | - |
dc.contributor.author | Sencar, Hüsrev Taha | - |
dc.contributor.author | Memon, Nasir | - |
dc.date.accessioned | 2021-09-11T15:42:59Z | - |
dc.date.available | 2021-09-11T15:42:59Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.citation | Conference on Media Forensics and Security II -- JAN 18-20, 2010 -- San Jose, CA | en_US |
dc.identifier.isbn | 978-0-8194-7934-1 | - |
dc.identifier.issn | 0277-786X | - |
dc.identifier.issn | 1996-756X | - |
dc.identifier.uri | https://doi.org/10.1117/12.845737 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6620 | - |
dc.description.abstract | Several promising techniques have been recently proposed to bind an image or video to its source acquisition device. These techniques have been intensively studied to address performance issues, but the computational efficiency aspect has not been given due consideration. Considering very large databases, in this paper, we focus on the efficiency of the sensor fingerprint based source device identification technique.(1) We propose a novel scheme based on tree structured vector quantization that offers logarithmic improvements in the search complexity as compared to conventional approach. To demonstrate the effectiveness of the proposed approach several experiments are conducted. Our results show that with the proposed scheme major improvement in search time can be achieved. | en_US |
dc.description.sponsorship | Soc Imaging Sci & Technol (IS&T), SPIE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Spie-Int Soc Optical Engineering | en_US |
dc.relation.ispartof | Media Forensics And Security Ii | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | PRNU noise | en_US |
dc.subject | camera identification | en_US |
dc.subject | efficient search | en_US |
dc.title | Efficient Techniques for Sensor Fingerprint Matching in Large Image & Video Databases | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | Proceedings of SPIE | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 7541 | en_US |
dc.identifier.wos | WOS:000283489600008 | en_US |
dc.identifier.scopus | 2-s2.0-77951856971 | en_US |
dc.institutionauthor | Sencar, Hüsrev Taha | - |
dc.identifier.doi | 10.1117/12.845737 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | Conference on Media Forensics and Security II | en_US |
dc.identifier.scopusquality | - | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
23
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
9
checked on Sep 21, 2024
Page view(s)
62
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.