Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6648
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelikyılmaz, Aslı-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:43:04Z-
dc.date.available2021-09-11T15:43:04Z-
dc.date.issued2008en_US
dc.identifier.issn1063-6706-
dc.identifier.issn1941-0034-
dc.identifier.urihttps://doi.org/10.1109/TFUZZ.2007.905919-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6648-
dc.description.abstractAlthough traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm, ii) a new structure identification algorithm, and iii) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine "fuzzy functions" for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike k-nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Transactions On Fuzzy Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfuzzy functions (FFs)en_US
dc.subjectfuzzy system modeling (FSM)en_US
dc.subjectimproved fuzzy clustering (IFC)en_US
dc.subjectinference mechanismsen_US
dc.titleEnhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithmen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume16en_US
dc.identifier.issue3en_US
dc.identifier.startpage779en_US
dc.identifier.endpage794en_US
dc.identifier.wosWOS:000256670200017en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1109/TFUZZ.2007.905919-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

93
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

86
checked on Sep 21, 2024

Page view(s)

72
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.