Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6653
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSert, Onur Can-
dc.contributor.authorDursun, Kayhan-
dc.contributor.authorÖzyer, Tansel-
dc.date.accessioned2021-09-11T15:43:05Z-
dc.date.available2021-09-11T15:43:05Z-
dc.date.issued2011en_US
dc.identifier.citationInternational Conference on Advances in Social Networks Analysis and Mining (ASONAM) -- JUL 25-27, 2011 -- Kaohsiung, TAIWANen_US
dc.identifier.isbn978-0-7695-4375-8-
dc.identifier.urihttps://doi.org/10.1109/ASONAM.2011.95-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6653-
dc.description.abstractMulti objective clustering is one focused area of multi objective optimization. Multi objective optimization attracted many researchers in several areas over a decade. Utilizing multi objective clustering mainly considers multiple objectives simultaneously and results with several natural clustering solutions. Obtained result set suggests different point of views for solving the clustering problem. This paper assumes all potential solutions belong to different experts and in overall; ensemble of solutions finally has been utilized for finding the final natural clustering. We have tested on categorical, further on mixed credit card dataset with different objectives, and compared them against single objective clustering result in terms of purity.en_US
dc.description.sponsorshipNatl Univ Kaohsiung, Natl Sci Council Taiwan, Minist Educ Taiwan, Web Intelligence Consortium Taiwan Ctr, State Univ New York Stony Broo, Univ S Denmark, Univ Calgary, Hellenic Amer Univ Greece, Global Univ Lebanon, Kaohsiung City Govt, Meet Taiwan, SolventoSOFT, Springer, WebGenie, Bur Foreign Trade, IEEE Comp Soc, ACM SIGSPATIAL, ACM SIGWEB, Taiwan Assoc Web Intelligence Consortium, ACM SIGCHI, ACM SIGKDD, Syst Man & Cybernet Socen_US
dc.description.sponsorshipScientific and Technical Research Council of Turkey (Tubitak EEEAG)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [109E241]en_US
dc.description.sponsorshipThis paper is part of the project sponsored by Scientific and Technical Research Council of Turkey (Tubitak EEEAG 109E241). We would like to thank for their support.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Socen_US
dc.relation.ispartof2011 International Conference On Advances In Social Networks Analysis And Mining (Asonam 2011)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulti-Objective Clusteringen_US
dc.subjectNSGA-IIen_US
dc.subjecth-confidenceen_US
dc.titleEnsemble of Multi-Objective Clustering Unified With H-Confidence Metric as Validity Metricen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage537en_US
dc.identifier.endpage541en_US
dc.identifier.wosWOS:000392279600074en_US
dc.identifier.scopus2-s2.0-80052754614en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1109/ASONAM.2011.95-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceInternational Conference on Advances in Social Networks Analysis and Mining (ASONAM)en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

72
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.