Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6705
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:43:15Z-
dc.date.available2021-09-11T15:43:15Z-
dc.date.issued2008en_US
dc.identifier.citation30th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society -- AUG 20-24, 2008 -- Vancouver, CANADAen_US
dc.identifier.isbn978-1-4244-1814-5-
dc.identifier.issn1557-170X-
dc.identifier.urihttps://doi.org/10.1109/IEMBS.2008.4649347-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6705-
dc.description.abstractThe automated diagnostic systems employing diverse and composite features for electrocardiogram (ECG) signals were analyzed and their accuracies were determined. Because of the importance of making the right decision, classification procedures classifying the ECG signals with high accuracy were investigated. The classification accuracies of mixture of experts (ME) trained on composite features and modified mixture of experts (MME) trained on diverse features were compared. The inputs of these automated diagnostic systems were composed of diverse or composite features (power levels of the power spectral density estimates obtained by the eigenvector methods) and were chosen according to the network structures. The conclusions of this study demonstrated that the MME trained on diverse features achieved accuracy rates which were higher than that of the ME trained on composite features.en_US
dc.description.sponsorshipDEVICIX, Green Coll, Natl Inst Hlth, NIBIB, NSF, PLEXON Inc, UBC Engn Biomed Engn, Univ Washington, Coll Engn, Bentham Sci Publ Ltd, Recent Patents Biomed Engn, Recent Patents Engnen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2008 30Th Annual International Conference of The IEEE Engineering In Medicine And Biology Society, Vols 1-8en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDiverse featuresen_US
dc.subjectComposite featuresen_US
dc.subjectElectrocardiogram (ECG) signalsen_US
dc.subjectMixture of expertsen_US
dc.subjectModified mixture of expertsen_US
dc.titleFeature Extraction for Analysis of ECG Signalsen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIEEE Engineering in Medicine and Biology Society Conference Proceedingsen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage1080en_US
dc.identifier.endpage1083en_US
dc.identifier.wosWOS:000262404500274en_US
dc.identifier.scopus2-s2.0-61849091848en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid19162850en_US
dc.identifier.doi10.1109/IEMBS.2008.4649347-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference30th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Societyen_US
dc.identifier.scopusquality--
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeConference Object-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

5
checked on Oct 5, 2024

Page view(s)

42
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.