Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6707
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüler, İnan-
dc.contributor.authorÜbeyli, Derya Elif-
dc.date.accessioned2021-09-11T15:43:15Z-
dc.date.available2021-09-11T15:43:15Z-
dc.date.issued2006en_US
dc.identifier.issn0952-1976-
dc.identifier.issn1873-6769-
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2005.05.004-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6707-
dc.description.abstractArtificial neural networks (ANNs) have been used in a great number of medical diagnostic decision support system applications and within feedforward ANNs framework there are a number of established measures such as saliency measures for identifying important input features. By identifying a set of salient features, the noise in a classification model can be reduced, resulting in more accurate classification. In this study, a signal-to-noise ratio (SNR) saliency measure was employed to determine saliency of input features of multilayer perception neural networks (MLPNNS) used in classification of Doppler signals. The SNR saliency measure determines the saliency of a feature by comparing it to that of an injected noise feature and the SNR screening method utilizes the SNR saliency measure to select a parsimonious set of salient features. Ophthalmic and internal carotid arterial Doppler signals were decomposed into time-frequency representations using discrete wavelet transform. Input feature vectors were extracted using statistics over the set of the wavelet coefficients. The MLPNNs used in classification of the ophthalmic and internal carotid arterial Doppler signals were trained for the SNR screening method. The application results of the SNR screening method to the ophthalmic and internal carotid arterial Doppler signals demonstrated that classification accuracies of the MLPNNs with salient input features are higher than that of the MLPNNs with salient and non-salient input features. (c) 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofEngineering Applications of Artificial Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfeature saliencyen_US
dc.subjectsignal-to-noise ratioen_US
dc.subjectDoppler signalen_US
dc.titleFeature Saliency Using Signal-To Ratios in Automated Diagnostic Systems Developed for Doppler Ultrasound Signalsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume19en_US
dc.identifier.issue1en_US
dc.identifier.startpage53en_US
dc.identifier.endpage63en_US
dc.identifier.wosWOS:000234724400006en_US
dc.identifier.scopus2-s2.0-29144441516en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.engappai.2005.05.004-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

5
checked on Oct 5, 2024

Page view(s)

66
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.