Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6763
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:43:28Z-
dc.date.available2021-09-11T15:43:28Z-
dc.date.issued2008en_US
dc.identifier.citationBISC International Special Event on Forging the Frontiers (BISCSE'05) -- NOV 03-06, 2005 -- Univ Calif Berkeley, Berkeley, CAen_US
dc.identifier.issn1568-4946-
dc.identifier.issn1872-9681-
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2007.12.004-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6763-
dc.description.abstract"Fuzzy Functions'' are proposed to be determined by the least squares estimation (LSE) technique for the development of fuzzy system models. These functions, "Fuzzy Functions with LSE'' are proposed as alternate representation and reasoning schemas to the fuzzy rule base approaches. These "Fuzzy Functions'' can be more easily obtained and implemented by those who are not familiar with an in-depth knowledge of fuzzy theory. Working knowledge of a fuzzy clustering algorithm such as FCM or its variations would be sufficient to obtain membership values of input vectors. The membership values together with scalar input variables are then used by the LSE technique to determine "Fuzzy Functions'' for each cluster identified by FCM. These functions are different from "Fuzzy Rule Base'' approaches as well as "Fuzzy Regression'' approaches. Various transformations of the membership values are included as new variables in addition to original selected scalar input variables; and at times, a logistic transformation of non-scalar original selected input variables may also be included as a new variable. A comparison of "Fuzzy Functions-LSE'' with Ordinary Least Squares Estimation (OLSE)'' approach show that "Fuzzy Function-LSE'' provide better results in the order of 10% or better with respect to RMSE measure for both training and test cases of data sets. (C) 2008 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofApplied Soft Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfuzzy functionsen_US
dc.subjectrule basesen_US
dc.subjectmembership valuesen_US
dc.subjecttransformationsen_US
dc.subjectinput-output variablesen_US
dc.subjectscalar and non-scalaren_US
dc.subjectreasoningen_US
dc.subjectleast squaresen_US
dc.subjectlogisticen_US
dc.titleFuzzy Functions With Lseen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume8en_US
dc.identifier.issue3en_US
dc.identifier.startpage1178en_US
dc.identifier.endpage1188en_US
dc.identifier.wosWOS:000253954100003en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1016/j.asoc.2007.12.004-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceBISC International Special Event on Forging the Frontiers (BISCSE'05)en_US
dc.identifier.scopusqualityQ2-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

67
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

74
checked on Oct 5, 2024

Page view(s)

54
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.