Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6764
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelikyılmaz, Aslı-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:43:28Z-
dc.date.available2021-09-11T15:43:28Z-
dc.date.issued2007-
dc.identifier.issn0020-0255-
dc.identifier.issn1872-6291-
dc.identifier.urihttps://doi.org/10.1016/j.ins.2007.06.022-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6764-
dc.description.abstractA new fuzzy system modeling (FSM) approach that identifies the fuzzy functions using support vector machines (SVM) is proposed. This new approach is structurally different from the fuzzy rule base approaches and fuzzy regression methods. It is a new alternate version of the earlier FSM with fuzzy functions approaches. SVM is applied to determine the support vectors for each fuzzy cluster obtained by fuzzy c-means (FCM) clustering algorithm. Original input variables, the membership values obtained from the FCM together with their transformations form a new augmented set of input variables. The performance of the proposed system modeling approach is compared to previous fuzzy functions approaches, standard SVM, LSE methods using an artificial sparse dataset and a real-life non-sparse dataset. The results indicate that the proposed fuzzy functions with support vector machines approach is a feasible and stable method for regression problems and results in higher performances than the classical statistical methods. (C) 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInformation Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfuzzy system modelingen_US
dc.subjectSupport vector machinesen_US
dc.subjectfuzzy functionsen_US
dc.subjectsupport vector regressionen_US
dc.subjectdata analysisen_US
dc.titleFuzzy Functions With Support Vector Machinesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.volume177en_US
dc.identifier.issue23en_US
dc.identifier.startpage5163en_US
dc.identifier.endpage5177en_US
dc.identifier.wosWOS:000250285400004-
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1016/j.ins.2007.06.022-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

76
checked on Mar 29, 2025

WEB OF SCIENCETM
Citations

56
checked on Mar 4, 2025

Page view(s)

64
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.