Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6777
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çelikyılmaz, Aslı | - |
dc.contributor.author | Türkşen, İsmail Burhan | - |
dc.date.accessioned | 2021-09-11T15:43:32Z | - |
dc.date.available | 2021-09-11T15:43:32Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.citation | Annual Meeting of the North-American-Fuzzy-Information-Processing-Society -- MAY 19-22, 2008 -- New York, NY | en_US |
dc.identifier.isbn | 978-1-4244-2351-4 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6777 | - |
dc.description.abstract | A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure. | en_US |
dc.description.sponsorship | N Amer Fuzzy Informat Proc Soc | en_US |
dc.description.sponsorship | National Science and Engineering Research Council - NSERC of CanadaNatural Sciences and Engineering Research Council of Canada (NSERC) | en_US |
dc.description.sponsorship | This work is partially supported by National Science and Engineering Research Council - NSERC Grant of Canada. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2008 Annual Meeting of The North American Fuzzy Information Processing Society, Vols 1 And 2 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | type-2 fuzzy functions | en_US |
dc.subject | classification | en_US |
dc.subject | genetic algorithms | en_US |
dc.title | Genetic Type-2 Fuzzy Classifier Functions | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 109 | en_US |
dc.identifier.endpage | 114 | en_US |
dc.identifier.wos | WOS:000258322800020 | en_US |
dc.identifier.scopus | 2-s2.0-51149119743 | en_US |
dc.institutionauthor | Türkşen, İsmail Burhan | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | Annual Meeting of the North-American-Fuzzy-Information-Processing-Society | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.