Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6791
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCantürk, Bilal-
dc.contributor.authorOikonomou, Thomas-
dc.contributor.authorBağcı, Gökhan Barış-
dc.date.accessioned2021-09-11T15:43:35Z-
dc.date.available2021-09-11T15:43:35Z-
dc.date.issued2017en_US
dc.identifier.issn0003-4916-
dc.identifier.issn1096-035X-
dc.identifier.urihttps://doi.org/10.1016/j.aop.2016.12.013-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6791-
dc.description.abstractCurado et al. (2016) have recently studied the axiomatic structure and the universality of a three-parameter trace-form entropy inspired by the group-theoretical structure. In this work, we study the group-theoretical entropy S-a,S-b,S-r in the context of the third law of thermodynamics where the parameters {a, b, r} are all independent. We show that this three-parameter entropy expression can simultaneously satisfy the third law of thermodynamics and the three Khinchin axioms, namely continuity, concavity and expansibility only when the parameter b is set to zero. In other words, it is thermodynamically valid only as a two-parameter generalization S-a,S-r. Moreover, the restriction set by the third law i.e., the condition b = 0, is important in the sense that the so obtained two-parameter group-theoretical entropy becomes extensive only when this condition is met. We also illustrate the interval of validity of the third law using the one-dimensional Ising model with no external field. Finally, we show that the S-a,S-r is in the same universality class as that of the Kaniadakis entropy for 0 < r < 1 while it has a distinct universality class in the interval 1 < r < 0. (C) 2016 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofAnnals of Physicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeneralized entropiesen_US
dc.subjectGroup theoryen_US
dc.subjectThird law of thermodynamicsen_US
dc.subjectKhinchin axiomsen_US
dc.subjectExtensivityen_US
dc.titleGroup Theory, Entropy and the Third Law of Thermodynamicsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Material Science and Nanotechnology Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümütr_TR
dc.identifier.volume377en_US
dc.identifier.startpage62en_US
dc.identifier.endpage70en_US
dc.authorid0000-0002-7280-5639-
dc.authorid0000-0003-4719-3906-
dc.identifier.wosWOS:000394197800006en_US
dc.identifier.scopus2-s2.0-85009290696en_US
dc.institutionauthorBağcı, Gökhan Barış-
dc.identifier.doi10.1016/j.aop.2016.12.013-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Nov 2, 2024

Page view(s)

42
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.