Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6798
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAvşar, Murat-
dc.contributor.authorYetik, İmam Şamil-
dc.date.accessioned2021-09-11T15:43:37Z-
dc.date.available2021-09-11T15:43:37Z-
dc.date.issued2015en_US
dc.identifier.citationIEEE 12th International Symposium on Biomedical Imaging -- APR 16-19, 2015 -- New York, NYen_US
dc.identifier.isbn978-1-4799-2374-8-
dc.identifier.issn1945-7928-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6798-
dc.description.abstractLaser hair removal is a popular nonsurgical aesthetic operation, where the aim is to remove unwanted hair permanently by damaging the hair follicle and shaft thermally. However, laser affects the superficial skin layers in addition to hair follicles causing health risks. Side effects of laser-assisted hair removal can be minimized by directing the laser beam only to the detected hair regions. This study proposes a feature-based hair region localization method using machine learning techniques, a first in this area. Features with low computational complexity have been proposed in order to discriminate hair and skin regions. Hair and skin region classification performances of different machine learning techniques have been applied and compared. Quantitative and visual results obtained from the proposed technique showed success in the detection of hair and skin regions. We concluded that the proposed method can be used in real-time guided laser hair removal devices.en_US
dc.description.sponsorshipNIBIB, NATL INST, IEEE, EMBen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2015 IEEE 12Th International Symposium On Biomedical Imaging (Isbi)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHair region detectionen_US
dc.subjectlaser hair removalen_US
dc.subjectmachine learningen_US
dc.subjectguided laser hair removal deviceen_US
dc.titleHair Region Localization With Optical Imaging for Guided Laser Hair Removalen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIEEE International Symposium on Biomedical Imagingen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage1411en_US
dc.identifier.endpage1414en_US
dc.authorid0000-0002-7330-4692-
dc.identifier.wosWOS:000380546000339en_US
dc.identifier.scopus2-s2.0-84944328138en_US
dc.institutionauthorYetik, Imam Şamil-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceIEEE 12th International Symposium on Biomedical Imagingen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Oct 5, 2024

Page view(s)

62
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.