Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6828
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkkocaoğlu, Hande-
dc.contributor.authorMerdan, Hüseyin-
dc.contributor.authorÇelik, Canan-
dc.date.accessioned2021-09-11T15:43:46Z-
dc.date.available2021-09-11T15:43:46Z-
dc.date.issued2013en_US
dc.identifier.issn0377-0427-
dc.identifier.urihttps://doi.org/10.1016/j.cam.2012.06.029-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6828-
dc.description.abstractThis work represents Hopf bifurcation analysis of a general non-linear differential equation involving time delay. A special form of this equation is the Hutchinson-Wright equation which is a mile stone in the mathematical modeling of population dynamics and mathematical biology. Taking the delay parameter as a bifurcation parameter, Hopf bifurcation analysis is studied by following the theory in the book by Hazzard et al. By analyzing the associated characteristic polynomial, we determine necessary conditions for the linear stability and Hopf bifurcation. In addition to this analysis, the direction of bifurcation, the stability and the period of a periodic solution to this equation are evaluated at a bifurcation value by using the Poincare normal form and the center manifold theorem. Finally, the theoretical results are supported by numerical simulations. (c) 2012 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofJournal of Computational And Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHopf bifurcationen_US
dc.subjectDelay differential equationen_US
dc.subjectTime delayen_US
dc.subjectStabilityen_US
dc.subjectPeriodic solutionsen_US
dc.titleHopf Bifurcation Analysis of a General Non-Linear Differential Equation With Delayen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume237en_US
dc.identifier.issue1en_US
dc.identifier.startpage565en_US
dc.identifier.endpage575en_US
dc.identifier.wosWOS:000309847100047en_US
dc.identifier.scopus2-s2.0-84866062122en_US
dc.institutionauthorMerdan, Hüseyin-
dc.identifier.doi10.1016/j.cam.2012.06.029-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

15
checked on Oct 5, 2024

Page view(s)

102
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.