Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6869
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:43:59Z-
dc.date.available2021-09-11T15:43:59Z-
dc.date.issued2008en_US
dc.identifier.issn0893-6080-
dc.identifier.issn1879-2782-
dc.identifier.urihttps://doi.org/10.1016/j.neunet.2008.08.005-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6869-
dc.description.abstractA new approach based on the implementation of probabilistic neural network (PNN) is presented for classification of electroencephalogram (EEG) signals. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Because of the importance of making the right decision, the present work is carried out for searching better classification procedures for the EEG signals. Decision making was performed in two stages: feature extraction by eigenvector methods and Classification using the classifiers trained on the extracted features. The aim of the study is classification of the EEG signals by the combination of eigenvector methods and the PNN. The purpose is to determine an Optimum Classification scheme for this problem and also to infer clues about the extracted features. The present research demonstrated that the power levels of the power spectral density (PSD) estimates obtained by the eigenvector methods are the features which well represent the EEG signals and the PNN trained on these features achieved high classification accuracies. (C) 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofNeural Networksen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectProbabilistic neural networksen_US
dc.subjectEigenvector methodsen_US
dc.subjectElectroencephalogram (EEG) signalsen_US
dc.titleImplementing eigenvector methods/probabilistic neural networks for analysis of EEG signalsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume21en_US
dc.identifier.issue9en_US
dc.identifier.startpage1410en_US
dc.identifier.endpage1417en_US
dc.identifier.wosWOS:000261550100020en_US
dc.identifier.scopus2-s2.0-54449097115en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid18815008en_US
dc.identifier.doi10.1016/j.neunet.2008.08.005-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

16
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

14
checked on Oct 5, 2024

Page view(s)

42
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.