Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6879
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAcar, Erdem-
dc.contributor.authorSolanki, Kiran N.-
dc.date.accessioned2021-09-11T15:44:02Z-
dc.date.available2021-09-11T15:44:02Z-
dc.date.issued2009en_US
dc.identifier.issn1358-8265-
dc.identifier.issn1754-2111-
dc.identifier.urihttps://doi.org/10.1080/13588260802462419-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6879-
dc.description.abstractDue to the scale and computational complexity of current simulation codes for vehicle crashworthiness analysis, metamodels have become indispensable tools for exploring and understanding the design space. Traditional application of metamodelling techniques is based on constructing multiple types of metamodels based on a common data set, selecting the most accurate one and discarding the rest. However, this practice does not take full advantage of the resources devoted for constructing different metamodels. This drawback can be overcome by combining individual metamodels in the form of an ensemble. Two case studies with a high-fidelity finite element vehicle model subject to offset-frontal and side impact conditions are presented for demonstration. The prediction accuracies of the individual metamodels and the ensemble of metamodels are compared, and it is found for all the crash responses of interest that the ensemble of metamodels outperforms all individual metamodels. It is also found that as the number of metamodels included in the ensemble increases, the prediction accuracy of the ensemble of metamodels increases.en_US
dc.description.sponsorshipCenter for Advanced Vehicular Systems; Mississippi State University; U. S. Department of EnergyUnited States Department of Energy (DOE)en_US
dc.description.sponsorshipThis study is supported by the Center for Advanced Vehicular Systems, Mississippi State University and U. S. Department of Energy. The support of these institutions is greatly appreciated.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofInternational Journal of Crashworthinessen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmetamodellingen_US
dc.subjectensembleen_US
dc.subjectautomobileen_US
dc.subjectcrashworthinessen_US
dc.subjectside impacten_US
dc.subjectoffset-frontal impacten_US
dc.subjectfinite element analysisen_US
dc.titleImproving the Accuracy of Vehicle Crashworthiness Response Predictions Using an Ensemble of Metamodelsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.volume14en_US
dc.identifier.issue1en_US
dc.identifier.startpage49en_US
dc.identifier.endpage61en_US
dc.authorid0000-0002-3661-5563-
dc.authorid0000-0002-3661-5563-
dc.authorid0000-0002-4385-620X-
dc.identifier.wosWOS:000264530600005en_US
dc.identifier.scopus2-s2.0-65249167514en_US
dc.institutionauthorAcar, Erdem-
dc.identifier.doi10.1080/13588260802462419-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

34
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

25
checked on Oct 5, 2024

Page view(s)

94
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.