Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6890
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSümer, Halil İbrahim-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.date.accessioned2021-09-11T15:44:06Z-
dc.date.available2021-09-11T15:44:06Z-
dc.date.issued2015-
dc.identifier.citation49th Asilomar Conference on Signals, Systems and Computers -- NOV 08-11, 2015 -- Asilomar, CAen_US
dc.identifier.isbn978-1-4673-8576-3-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6890-
dc.description.abstractFalls present a great health threat as people get older, and it has been shown in studies that rapid response is critical to decreasing fall-related mortality. Thus, the development of signal processing algorithms for biomedical applications involving assisted living has become an avid area of research. In this work, a novel algorithm for activity classification and fall detection using a seismic sensor network is proposed. More specifically, classification of falling as well as sources of parasitic signals, such as dropping an object, slamming a door, and shutting a window, are considered. A new target detection and feature extraction algorithm based on wavelet coefficient characterization and spectral statistics is proposed. Results quantifying the performance of the algorithm on real data from a seismic sensor network are given. It is shown that the algorithm offers a reduction of false alarms especially in the case of potentially confusable parasitic signals.en_US
dc.description.sponsorshipIEEE Signal Proc Socen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2015 49Th Asilomar Conference On Signals, Systems And Computersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfall detectionen_US
dc.subjecthuman activityen_US
dc.subjectseismic sensor networken_US
dc.subjectclassificationen_US
dc.titleIndoor Fall Detection Using a Network of Seismic Sensorsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage452en_US
dc.identifier.endpage456en_US
dc.identifier.wosWOS:000380471900083-
dc.identifier.scopus2-s2.0-84969754367-
dc.institutionauthorGürbüz, Sevgi Zübeyde-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference49th Asilomar Conference on Signals, Systems and Computersen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Dec 28, 2024

Page view(s)

44
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.