Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6897
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTan, Mehmet-
dc.contributor.authorAlshalalfa, Mohammed-
dc.contributor.authorAlhajj, Reda-
dc.contributor.authorPolat, Faruk-
dc.date.accessioned2021-09-11T15:44:08Z-
dc.date.available2021-09-11T15:44:08Z-
dc.date.issued2011en_US
dc.identifier.issn1545-5963-
dc.identifier.issn1557-9964-
dc.identifier.urihttps://doi.org/10.1109/TCBB.2009.58-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6897-
dc.description.abstractConstraint-based structure learning algorithms generally perform well on sparse graphs. Although sparsity is not uncommon, there are some domains where the underlying graph can have some dense regions; one of these domains is gene regulatory networks, which is the main motivation to undertake the study described in this paper. We propose a new constraint-based algorithm that can both increase the quality of output and decrease the computational requirements for learning the structure of gene regulatory networks. The algorithm is based on and extends the PC algorithm. Two different types of information are derived from the prior knowledge; one is the probability of existence of edges, and the other is the nodes that seem to be dependent on a large number of nodes compared to other nodes in the graph. Also a new method based on Gene Ontology for gene regulatory network validation is proposed. We demonstrate the applicability and effectiveness of the proposed algorithms on both synthetic and real data sets.en_US
dc.description.sponsorshipScientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)en_US
dc.description.sponsorshipMehmet Tan's research is partially supported by the Scientific and Technological Research Council of Turkey.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Socen_US
dc.relation.ispartofIEEE-Acm Transactions On Computational Biology And Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGene regulatory networksen_US
dc.subjecttranscription factorsen_US
dc.subjectgenesen_US
dc.subjectmicroarray dataen_US
dc.subjectgene ontologyen_US
dc.subjectprior knowledge-based learningen_US
dc.titleInfluence of Prior Knowledge in Constraint-Based Learning of Gene Regulatory Networksen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume8en_US
dc.identifier.issue1en_US
dc.identifier.startpage130en_US
dc.identifier.endpage142en_US
dc.authorid0000-0002-1741-0570-
dc.authorid0000-0003-0509-9153-
dc.identifier.wosWOS:000283926400012en_US
dc.identifier.scopus2-s2.0-78449277499en_US
dc.institutionauthorTan, Mehmet-
dc.identifier.pmid21071802en_US
dc.identifier.doi10.1109/TCBB.2009.58-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

15
checked on Oct 5, 2024

Page view(s)

110
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.