Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6963
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGürbüz, Sevgi Z.-
dc.contributor.authorMelvin, William L.-
dc.contributor.authorWilliams, Douglas B.-
dc.date.accessioned2021-09-11T15:44:33Z-
dc.date.available2021-09-11T15:44:33Z-
dc.date.issued2012-
dc.identifier.issn0018-9251-
dc.identifier.issn1557-9603-
dc.identifier.urihttps://doi.org/10.1109/TAES.2012.6178063-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6963-
dc.description.abstractHumans are difficult targets to detect because they have small radar cross sections (RCS) and move at low velocities. Consequently, they are masked by Doppler spread ground clutter generated by the radar bearing platform motion. Furthermore, conventional radar-based human detection systems employ some type of linear-phase matched filtering, whereas most human targets generate a highly nonlinear phase history. This work proposes an enhanced, optimized, nonlinear phase (EnONLP) matched filter that exploits knowledge of human gait to improve the radar detection performance of human targets. A parametric model of the expected human response is derived for multi-channel radar systems and used to generate a dictionary of human returns for a range of possible parameter variations. The best linear combination of projections in this dictionary is computed via orthogonal matching pursuit (OMP) to detect and extract features for multiple targets. Performance of the proposed EnONLP method is compared with that of traditional space-time adaptive processing (STAP) and a previously derived parameter estimation-based ONLP detector. Results show that EnONLP exhibits a detection probability of about 0.8 for a clutter-to-noise (CNR) ratio of 20 dB and input signal-to-noise ratio (SNR) of 0 dB, while ONLP yields a 0.3 and STAP yields a 0.18 probability of detection for the same false alarm rate.en_US
dc.description.sponsorshipU.S. Air Force Research LaboratoryUnited States Department of DefenseUS Air Force Research Laboratory [FA8650-05-D-1912]en_US
dc.description.sponsorshipThis work was supported in part by the U.S. Air Force Research Laboratory under Prime Contract FA8650-05-D-1912 and approved for public release as RY-11-0062.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Transactions On Aerospace And Electronic Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleKinematic Model-Based Human Detectors for Multi-Channel Radaren_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume48en_US
dc.identifier.issue2en_US
dc.identifier.startpage1306en_US
dc.identifier.endpage1318en_US
dc.authorid0000-0001-7487-9087-
dc.identifier.wosWOS:000302647400025-
dc.identifier.scopus2-s2.0-84859855744-
dc.institutionauthorGürbüz, Sevgi Zübeyde-
dc.identifier.doi10.1109/TAES.2012.6178063-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Jan 18, 2025

WEB OF SCIENCETM
Citations

12
checked on Jan 11, 2025

Page view(s)

26
checked on Jan 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.