Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6977
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:44:38Z-
dc.date.available2021-09-11T15:44:38Z-
dc.date.issued2010en_US
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.05.012-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6977-
dc.description.abstractThe aim Of the study is classification of the electroencephalogram (EEG) signals by combination of the model-based methods and the least squares support vector machines (LS-SVMs). The LS-SVMs were implemented for classification of two types of EEG signals (set A - EEG signals recorded from healthy volunteers with eyes open and set E - EEG signals recorded from epilepsy patients during epileptic seizures). In order to extract the features representing the EEG signals, the spectral analysis of the EEG signals was performed by using the three model-based methods (Burg autoregressive - AR, moving average - MA, least squares modified Yule-Walker autoregressive moving average - ARMA methods). The present research demonstrated that the Burg AR coefficients are the features which well represent the EEG signals and the LS-SVM trained on these features achieved high classification accuracies. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectModel-based methodsen_US
dc.subjectElectroencephalogram (EEG) signalsen_US
dc.titleLeast squares support vector machine employing model-based methods coefficients for analysis of EEG signalsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume37en_US
dc.identifier.issue1en_US
dc.identifier.startpage233en_US
dc.identifier.endpage239en_US
dc.identifier.wosWOS:000271571000027en_US
dc.identifier.scopus2-s2.0-70349472753en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.eswa.2009.05.012-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

148
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

121
checked on Oct 5, 2024

Page view(s)

62
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.