Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6983
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGürbüz, Ali Cafer-
dc.date.accessioned2021-09-11T15:44:41Z-
dc.date.available2021-09-11T15:44:41Z-
dc.date.issued2011-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.3906/elk-0910-272-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6983-
dc.description.abstractThis paper examines the detection of parameterized shapes in multidimensional noisy grayscale images. A novel shape detection algorithm utilizing random sample theory is presented. Although the method can be generalized, line detection is detailed. Each line in the image corresponds to a point in the line parameter space. The method creates hypothesis lines by randomly selecting parameter space points and tests the surrounding regions for acceptable linear features. The information obtained from each randomly selected line is used to update the parameter distribution, which reduces the required number of random trials. The selected lines are re-estimated within a smaller search space with a more accurate algorithm like the Hough transform (HT). Faster results are obtained compared to HT, without losing performance as in other faster HT variants. The method is robust and suitable for binary or grayscale images. Results are given from both simulated and experimental subsurface seismic and ground penetrating radar (GPR) images when searching for features like pipes or tunnels.en_US
dc.language.isoenen_US
dc.publisherTubitak Scientific & Technical Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering And Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLine detectionen_US
dc.subjectHough Transformen_US
dc.subjectTunnel Detectionen_US
dc.subjectRandom samplingen_US
dc.subjectSubsurface shape detectionen_US
dc.titleLine Detection With Adaptive Random Samplesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume19en_US
dc.identifier.issue1en_US
dc.identifier.startpage21en_US
dc.identifier.endpage32en_US
dc.authorid0000-0001-8923-0299-
dc.authorid0000-0001-8923-0299-
dc.identifier.wosWOS:000288230700002-
dc.identifier.scopus2-s2.0-78650876383-
dc.institutionauthorGürbüz, Ali Cafer-
dc.identifier.doi10.3906/elk-0910-272-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.trdizinid111409-
dc.identifier.wosqualityQ4-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Jan 18, 2025

WEB OF SCIENCETM
Citations

4
checked on Jan 18, 2025

Page view(s)

48
checked on Jan 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.