Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6983
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gürbüz, Ali Cafer | - |
dc.date.accessioned | 2021-09-11T15:44:41Z | - |
dc.date.available | 2021-09-11T15:44:41Z | - |
dc.date.issued | 2011 | - |
dc.identifier.issn | 1300-0632 | - |
dc.identifier.issn | 1303-6203 | - |
dc.identifier.uri | https://doi.org/10.3906/elk-0910-272 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6983 | - |
dc.description.abstract | This paper examines the detection of parameterized shapes in multidimensional noisy grayscale images. A novel shape detection algorithm utilizing random sample theory is presented. Although the method can be generalized, line detection is detailed. Each line in the image corresponds to a point in the line parameter space. The method creates hypothesis lines by randomly selecting parameter space points and tests the surrounding regions for acceptable linear features. The information obtained from each randomly selected line is used to update the parameter distribution, which reduces the required number of random trials. The selected lines are re-estimated within a smaller search space with a more accurate algorithm like the Hough transform (HT). Faster results are obtained compared to HT, without losing performance as in other faster HT variants. The method is robust and suitable for binary or grayscale images. Results are given from both simulated and experimental subsurface seismic and ground penetrating radar (GPR) images when searching for features like pipes or tunnels. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Tubitak Scientific & Technical Research Council Turkey | en_US |
dc.relation.ispartof | Turkish Journal of Electrical Engineering And Computer Sciences | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Line detection | en_US |
dc.subject | Hough Transform | en_US |
dc.subject | Tunnel Detection | en_US |
dc.subject | Random sampling | en_US |
dc.subject | Subsurface shape detection | en_US |
dc.title | Line Detection With Adaptive Random Samples | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.volume | 19 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 21 | en_US |
dc.identifier.endpage | 32 | en_US |
dc.authorid | 0000-0001-8923-0299 | - |
dc.authorid | 0000-0001-8923-0299 | - |
dc.identifier.wos | WOS:000288230700002 | - |
dc.identifier.scopus | 2-s2.0-78650876383 | - |
dc.institutionauthor | Gürbüz, Ali Cafer | - |
dc.identifier.doi | 10.3906/elk-0910-272 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.trdizinid | 111409 | - |
dc.identifier.wosquality | Q4 | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
4
checked on Jan 18, 2025
WEB OF SCIENCETM
Citations
4
checked on Jan 18, 2025
Page view(s)
48
checked on Jan 20, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.