Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7029
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:45:01Z-
dc.date.available2021-09-11T15:45:01Z-
dc.date.issued2008en_US
dc.identifier.issn1051-2004-
dc.identifier.issn1095-4333-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2007.09.009-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7029-
dc.description.abstractMedical diagnostic accuracies can be improved when the pattern is simplified through representation by important features. The feature vector, which is comprised of the set of all features used to describe a pattern, is a reduced-dimensional representation of that pattern. The noise in a classification model can be reduced by identifying a set of salient features and then more accurate classification can be obtained. In this study, a signal-to-noise ratio (SNR) saliency measure was employed to determine saliency of input features of probabilistic neural networks (PNNs) used in classification of internal carotid arterial Doppler signals (ICADS). In order to extract features representing the ICADS, model-based methods were used. The PNNs used in the ICADS classification were trained for the SNR screening method. The application results of the SNR screening method to the ICADS demonstrated that classification accuracies of the PNNs with salient input features are higher than that of the PNNs with salient and nonsalient input features. (C) 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofDigital Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfeature saliencyen_US
dc.subjectsignal-to-noise ratioen_US
dc.subjectmodel-based methodsen_US
dc.subjectinternal carotid arterial Doppler signals classificationen_US
dc.titleMeasuring saliency of features extracted by model-based methods from internal carotid arterial Doppler signals using signal-to-noise ratiosen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume18en_US
dc.identifier.issue1en_US
dc.identifier.startpage2en_US
dc.identifier.endpage14en_US
dc.identifier.wosWOS:000252537700002en_US
dc.identifier.scopus2-s2.0-36549073728en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.dsp.2007.09.009-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Oct 26, 2024

Page view(s)

36
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.