Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7030
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:45:01Z-
dc.date.available2021-09-11T15:45:01Z-
dc.date.issued2009en_US
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2007.09.019-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7030-
dc.description.abstractVarious methodologies of automated diagnosis have been adopted, however the entire process can generally be subdivided into a number of disjoint processing modules: pre-processing, feature extraction/selection, and classification. Features are used to represent patterns with minimal loss of important information. The feature vector, which is comprised of the set of all features used to describe a pattern, is a reduced-dimensional representation of that pattern. Medical diagnostic accuracies can be improved when the pattern is simplified through representation by important features. By identifying a set of salient features, the noise in a classification model can be reduced, resulting in more accurate classification. In this study, a signal-to-noise ratio (SNR) saliency measure was employed to determine saliency of input features of probabilistic neural networks (PNNs) used in classification of electroencephalogram (EEG) signals. In order to extract features representing the EEG signals, eigenvector methods were used. The PNNs used in the EEG signals classification were trained for the SNR screening method. The application results of the SNR screening method to the EEG signals demonstrated that classification accuracies of the PNNs with salient input features are higher than that of the PNNs with salient and non-salient input features. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFeature saliencyen_US
dc.subjectSignal-to-noise ratioen_US
dc.subjectEigenvector methodsen_US
dc.subjectEEG signals classificationen_US
dc.titleMeasuring saliency of features representing EEG signals using signal-to-noise ratiosen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume36en_US
dc.identifier.issue1en_US
dc.identifier.startpage501en_US
dc.identifier.endpage509en_US
dc.identifier.wosWOS:000264182800051en_US
dc.identifier.scopus2-s2.0-53849114338en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.eswa.2007.09.019-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

6
checked on Oct 26, 2024

Page view(s)

44
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.