Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7031
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:45:01Z-
dc.date.available2021-09-11T15:45:01Z-
dc.date.issued2008en_US
dc.identifier.issn0148-5598-
dc.identifier.urihttps://doi.org/10.1007/s10916-008-9152-x-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7031-
dc.description.abstractMedical diagnostic accuracies can be improved when the pattern is simplified through representation by important features. The feature vector, which is comprised of the set of all features used to describe a pattern, is a reduced-dimensional representation of that pattern. By identifying a set of salient features, the noise in a classification model can be reduced, resulting in more accurate classification. In this study, a signal-to-noise ratio (SNR) saliency measure was employed to determine saliency of input features of probabilistic neural networks (PNNs) used in classification of two types of electrocardiogram (ECG) beats (normal and partial epilepsy). In order to extract features representing the ECG signals, discrete wavelet transform was used. The PNNs used in the ECG signals classification were trained for the SNR screening method. The application results of the SNR screening method to the ECG signals demonstrated that classification accuracies of the PNNs with salient input features are higher than that of the PNNs with salient and non-salient input features.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Medical Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFeature saliencyen_US
dc.subjectSignal-to-noise ratioen_US
dc.subjectDiscrete wavelet transformen_US
dc.subjectPartial epilepsy ECG beaten_US
dc.titleMeasuring Saliency of Features Using Signal-to-noise Ratios for Detection of Electrocardiographic Changes in Partial Epileptic Patientsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume32en_US
dc.identifier.issue6en_US
dc.identifier.startpage463en_US
dc.identifier.endpage470en_US
dc.identifier.wosWOS:000260375900003en_US
dc.identifier.scopus2-s2.0-54949157958en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid19058650en_US
dc.identifier.doi10.1007/s10916-008-9152-x-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

46
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.