Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7097
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Güler, İnan | - |
dc.contributor.author | Übeyli, Elif Derya | - |
dc.date.accessioned | 2021-09-11T15:45:32Z | - |
dc.date.available | 2021-09-11T15:45:32Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.issn | 1089-7771 | - |
dc.identifier.issn | 1558-0032 | - |
dc.identifier.uri | https://doi.org/10.1109/TITB.2006.879600 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7097 | - |
dc.description.abstract | In this paper, we proposed the multiclass support vector machine (SVM) with the error-correcting output codes for the multiclass electroencephalogram (EEG) signals classification problem. The probabilistic neural network (PNN) and multilayer perceptron neural network were also tested and benchmarked for their performance on the classification of the EEG signals. Decision making was performed in two stages: feature extraction by computing the wavelet coefficients and the Lyapunov exponents and classification using the classifiers trained on the extracted features. The purpose was to determine an optimum classification scheme for this problem and also to infer clues about the extracted features. Our research demonstrated that the wavelet coefficients and the Lyapunov exponents are the features which well represent the EEG signals and the multiclass SVM and PNN trained on these features achieved high classification accuracies. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | IEEE Transactions On Information Technology In Biomedicine | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | electroencephalogram (EEG) signals | en_US |
dc.subject | Lyapunov exponents | en_US |
dc.subject | multiclass support vector machine (SVM) | en_US |
dc.subject | probabilistic neural network (PNN) | en_US |
dc.subject | wavelet coefficients | en_US |
dc.title | Multiclass support vector machines for EEG-signals classification | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 11 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 117 | en_US |
dc.identifier.endpage | 126 | en_US |
dc.identifier.wos | WOS:000245158600001 | en_US |
dc.identifier.scopus | 2-s2.0-34047114775 | en_US |
dc.institutionauthor | Übeyli, Elif Derya | - |
dc.identifier.pmid | 17390982 | en_US |
dc.identifier.doi | 10.1109/TITB.2006.879600 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
277
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
261
checked on Oct 26, 2024
Page view(s)
90
checked on Nov 11, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.