Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7133
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelikyılmaz, Aslı-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:55:46Z-
dc.date.available2021-09-11T15:55:46Z-
dc.date.issued2007en_US
dc.identifier.citationIFSA 2007 World Congress -- JUN 18-21, 2007 -- Cancun, MEXICOen_US
dc.identifier.isbn978-3-540-72431-5-
dc.identifier.issn1615-3871-
dc.identifier.urihttps://doi.org/10.1007/978-3-540-72432-2_82-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7133-
dc.description.abstractA new cluster validity index is introduced to validate the results obtained by the recent Improved Fuzzy Clustering (IFC), which combines two different methods, i.e., fuzzy c-means clustering and fuzzy c-regression, in a novel way. Proposed validity measure determines the optimum number of clusters of the IFC based on a ratio of the compactness to separability of the clusters. The compactness is represented with: (i) the sum of the average distances of each object to their cluster centers, and (ii) the error measure of their fuzzy functions, which utilizes membership values as additional input variables. The separability is based on the ratio between: (i) the maximum distance between the cluster representatives, and (ii) the angles between their representative fuzzy functions. The experiments exhibit that the new cluster validity index is a useful function when selecting the parameters of the IFC.en_US
dc.description.sponsorshipInt Fuzzy Syst Assoc, Hispan Amer Fuzzy Syst Assoc, Tijuana Inst Technol, Div Grad Studiesen_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofAnalysis And Design of Intelligent Systems Using Soft Computing Techniquesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcluster validityen_US
dc.subjectimproved fuzzy clusteringen_US
dc.titleNew Cluster Validity Index With Fuzzy Functionsen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesADVANCES IN SOFT COMPUTINGen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume41en_US
dc.identifier.startpage821en_US
dc.identifier.endpage+en_US
dc.identifier.wosWOS:000249852400082en_US
dc.identifier.scopus2-s2.0-59549086912en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1007/978-3-540-72432-2_82-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceIFSA 2007 World Congressen_US
dc.identifier.scopusqualityQ4-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 2, 2024

Page view(s)

70
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.