Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7148
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüven, Erhan-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2021-09-11T15:55:48Z-
dc.date.available2021-09-11T15:55:48Z-
dc.date.issued2012en_US
dc.identifier.citationConference on Complex Adaptive Systems -- NOV 14-16, 2012 -- Washington, DCen_US
dc.identifier.issn1877-0509-
dc.identifier.urihttps://doi.org/10.1016/j.procs.2012.09.051-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7148-
dc.description.abstractIn recent years, very large scale online music databases containing more than 10 million tracks became prevalent as the fostered availability of streaming and downloading services via the World-Wide Web. The set of access schemes, or Music Information Retrieval (MIR), still poses several and partially solved problems, especially the personalization of the access, such as query by humming, melody, mood, style, genre, instrument, etc. Generally the previous approaches utilized the spectral features of the music track and extracted several high-level features such as pitch, cepstral coefficients, power, and the time-domain features such as onset, tempo, etc. In this work, however, the low-level local features of the spectrogram partitioned by means of the Bark scale are utilized to extract the quantized time-frequency-power features to be used by a Support Vector Machine to classify the notes (melody) and the timbre (instrument) of 128 instruments of General Midi standard. A database of 3-second sound clips of notes C4 to C5 on 7 sound cards using two software synthesizers is constructed and used for experimental note and timbre classification. The preliminary results of 13-category music note and 16-category timbre classifications are promising and their performance scores are surpassing the previously proposed methods.en_US
dc.description.sponsorshipMissouri Univ Sci & Technol, Lockheed Martin, Mocana, Tata Consultancy Serv, GAK3, Drexel Univ Online, Hark.comen_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofComplex Adaptive Systems 2012en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMusic information retrievalen_US
dc.subjectmusic noteen_US
dc.subjecttimbreen_US
dc.subjectspectrogram featuresen_US
dc.subjectstatistical learningen_US
dc.titleNote and Timbre Classification by Local Features of Spectrogramen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesProcedia Computer Scienceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume12en_US
dc.identifier.startpage182en_US
dc.identifier.endpage187en_US
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000314992600027en_US
dc.identifier.scopus2-s2.0-84897005307en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1016/j.procs.2012.09.051-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceConference on Complex Adaptive Systemsen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

4
checked on Oct 5, 2024

Page view(s)

66
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.