Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7152
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Efe, Mehmet Önder | - |
dc.date.accessioned | 2021-09-11T15:55:49Z | - |
dc.date.available | 2021-09-11T15:55:49Z | - |
dc.date.issued | 2008 | - |
dc.identifier.issn | 1370-4621 | - |
dc.identifier.issn | 1573-773X | - |
dc.identifier.uri | https://doi.org/10.1007/s11063-008-9082-0 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7152 | - |
dc.description.abstract | Feedforward neural network structures have extensively been considered in the literature. In a significant volume of research and development studies hyperbolic tangent type of a neuronal nonlinearity has been utilized. This paper dwells on the widely used neuronal activation functions as well as two new ones composed of sines and cosines, and a sinc function characterizing the firing of a neuron. The viewpoint here is to consider the hidden layer(s) as transforming blocks composed of nonlinear basis functions, which may assume different forms. This paper considers 8 different activation functions which are differentiable and utilizes Levenberg-Marquardt algorithm for parameter tuning purposes. The studies carried out have a guiding quality based on empirical results on several training data sets. | en_US |
dc.description.sponsorship | TOBB Economics and Technology UniversityTOBB Ekonomi ve Teknoloji University [ETU BAP-2006/04]; TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [107E137] | en_US |
dc.description.sponsorship | This work was supported by TOBB Economics and Technology University, BAP Program, under contract no ETU BAP-2006/04 and TUBITAK contract no 107E137. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Neural Processing Letters | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | activation functions | en_US |
dc.subject | dynamical system identification | en_US |
dc.subject | Levenberg-Marquardt algorithm | en_US |
dc.title | Novel Neuronal Activation Functions for Feedforward Neural Networks | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.volume | 28 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 63 | en_US |
dc.identifier.endpage | 79 | en_US |
dc.authorid | 0000-0002-5992-895X | - |
dc.identifier.wos | WOS:000259575500001 | - |
dc.identifier.scopus | 2-s2.0-52949151520 | - |
dc.institutionauthor | Önder Efe, Mehmet | - |
dc.identifier.doi | 10.1007/s11063-008-9082-0 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.wosquality | Q3 | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 02.5. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.