Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7191
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelik, S.-
dc.contributor.authorAndersen, R. G.-
dc.contributor.authorTekoğlu, C.-
dc.contributor.authorNielsen, K. L.-
dc.date.accessioned2021-09-11T15:55:55Z-
dc.date.available2021-09-11T15:55:55Z-
dc.date.issued2021en_US
dc.identifier.issn0376-9429-
dc.identifier.issn1573-2673-
dc.identifier.urihttps://doi.org/10.1007/s10704-020-00513-8-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7191-
dc.description.abstractThe two distinct tearing mechanisms observed in ductile metal plates are the void-by-void advance of the crack tip, and the simultaneous interaction of multiple voids on the plane ahead of the crack tip. Void-by-void crack advance, which leads to a cup-cup crack surface morphology, is the dominant mechanism if the plate contains a low number of small void nucleation sites (i.e., second phase particles). Conversely, a large number and/or size of nucleation sites trigger the simultaneous interaction of multiple voids resulting in a slanted crack. The present work aims to provide further insight into the parameters controlling the mechanisms and energy dissipation of plate tearing by focusing on the shape and, thereby, the orientation of the nucleation sites. The study uses a two-dimensional plane strain finite element domain to model the cross section of a plate, subject to mode I tearing, with discretely modeled, randomly distributed, finite-sized elliptic void nucleation sites. The developed finite element setup can capture the dependence of the crack surface morphology on the microstructure of the plate. The simulation results confirm that cup-cup crack propagation develops by intense plastic straining throughout the thinning region of the plate. Conversely, slanted and cup-cone cracks propagate in thin localized shear deformation bands. The energy dissipation is, therefore, greater for cup-cup cracks. The study demonstrates that the damage-related microstructure has a significant role in determining the overall hardening capacity of a plate, which in turn dictates the tearing mode and energy.en_US
dc.description.sponsorshipTuBTAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [315M133]; Department of Mechanical Engineering at the Technical University of Denmark; Independent Research Fund Denmark [DFF-7017-00121, 0136-00194B]en_US
dc.description.sponsorshipThe authors gratefully acknowledge the financial support by TuBTAK (Project No: 315M133). RGA is financially supported by the Department of Mechanical Engineering at the Technical University of Denmark in the project "Advancing Numerical Analysis of Large Scale Crack Propagation in Plate Structures". KLN is financially supported by Independent Research Fund Denmark, partly, in the project "Advanced Damage Models with InTrinsic Size Effects" (Grant no: DFF-7017-00121), and, partly, in the project "Why, Where and When metals fail" (Grant no: 0136-00194B).en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofInternational Journal of Fractureen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDuctile failureen_US
dc.subjectGurson modelen_US
dc.subjectVoid interactionen_US
dc.subjectSize effecten_US
dc.subjectShape effecten_US
dc.titleOn the Dependence of Crack Surface Morphology and Energy Dissipation on Microstructure in Ductile Plate Tearingen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.authorid0000-0001-7383-3909-
dc.authorid0000-0002-0502-8008-
dc.identifier.wosWOS:000619904700001en_US
dc.identifier.scopus2-s2.0-85101260518en_US
dc.institutionauthorTekoğlu, Cihan-
dc.identifier.doi10.1007/s10704-020-00513-8-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 2, 2024

Page view(s)

48
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.