Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7345
Title: | Radar Simulation of Human Micro-Doppler Signature from Video Motion Capture Data | Authors: | Karabacak, Cesur Gürbüz, Sevgi Zübeyde Gürbüz, Ali Cafer |
Keywords: | radar human micro-Doppler simulation. |
Publisher: | IEEE | Source: | 21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUS | Series/Report no.: | Signal Processing and Communications Applications Conference | Abstract: | The availability of data sets on which signal processing techniques may be tested is critical to the development of human detection, identification, and classification algorithms. However, in many cases real radar data of the desired characteristics may be expensive or difficult to obtain. In this case, synthetic or simulated data is desired. Much of the simulated data used in publications is derived from the Boulic kinematic model. But, the Boulic model is only valid for walking and is not applicable to compute the micro-Doppler signatures of other human motions. The Carnegie Mellon University motion capture library includes data from a wide range of human activities and provides the time-varying position of body parts. In this work, this video motion capture data is used to generate the radar micro-Doppler signature for many human activities. Observations about the micro-Doppler signatures computed are also shared. | URI: | https://hdl.handle.net/20.500.11851/7345 | ISBN: | 978-1-4673-5563-6; 978-1-4673-5562-9 | ISSN: | 2165-0608 |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
WEB OF SCIENCETM
Citations
6
checked on Nov 2, 2024
Page view(s)
104
checked on Nov 11, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.