Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7362
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Maral, Hakan | - |
dc.contributor.author | Akgün, Toygar | - |
dc.contributor.author | Aktaş, Metin | - |
dc.date.accessioned | 2021-09-11T15:56:37Z | - |
dc.date.available | 2021-09-11T15:56:37Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.citation | 26th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 02-05, 2018 -- Izmir, TURKEY | en_US |
dc.identifier.isbn | 978-1-5386-1501-0 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7362 | - |
dc.description.abstract | In this paper, we present a real time treat classification approach to be used in a distributed acoustic sensing system that is developed for monitoring linear assets with a maximum length of 50 kms. The Convolutional Neuaral Network (CNN) based deep learning approach is used for treat classification. The classification accuracies and execution times for neural networks with different architecture and complexity are measured. The proposed approach for classifying all the detected treats without decreasing the detection accuracy is introduced. The maximum allowable execution time for the network structure that is appropriate for the proposed approach is analyzed for the worst case scenario. Hence, the most appropriate network architecture selection can be performed based on classification accuracy and also applicability in real-time criterion. | en_US |
dc.description.sponsorship | IEEE, Huawei, Aselsan, NETAS, IEEE Turkey Sect, IEEE Signal Proc Soc, IEEE Commun Soc, ViSRATEK, Adresgezgini, Rohde & Schwarz, Integrated Syst & Syst Design, Atilim Univ, Havelsan, Izmir Katip Celebi Univ | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2018 26Th Signal Processing And Communications Applications Conference (Siu) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Distributed acoustic sensing | en_US |
dc.subject | phase-OTDR | en_US |
dc.subject | deep learning | en_US |
dc.subject | convolutional neural networks | en_US |
dc.subject | CNN | en_US |
dc.subject | threat detection | en_US |
dc.subject | threat classification | en_US |
dc.subject | real-time processing | en_US |
dc.title | Real Time Classification Analysis in Distributed Acoustic Sensing Systems | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.authorid | 0000-0001-9674-938X | - |
dc.identifier.wos | WOS:000511448500535 | en_US |
dc.identifier.scopus | 2-s2.0-85050803593 | en_US |
dc.institutionauthor | Akgün, Toygar | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | 26th IEEE Signal Processing and Communications Applications Conference (SIU) | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | tr | - |
item.grantfulltext | none | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.