Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7362
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaral, Hakan-
dc.contributor.authorAkgün, Toygar-
dc.contributor.authorAktaş, Metin-
dc.date.accessioned2021-09-11T15:56:37Z-
dc.date.available2021-09-11T15:56:37Z-
dc.date.issued2018en_US
dc.identifier.citation26th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 02-05, 2018 -- Izmir, TURKEYen_US
dc.identifier.isbn978-1-5386-1501-0-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7362-
dc.description.abstractIn this paper, we present a real time treat classification approach to be used in a distributed acoustic sensing system that is developed for monitoring linear assets with a maximum length of 50 kms. The Convolutional Neuaral Network (CNN) based deep learning approach is used for treat classification. The classification accuracies and execution times for neural networks with different architecture and complexity are measured. The proposed approach for classifying all the detected treats without decreasing the detection accuracy is introduced. The maximum allowable execution time for the network structure that is appropriate for the proposed approach is analyzed for the worst case scenario. Hence, the most appropriate network architecture selection can be performed based on classification accuracy and also applicability in real-time criterion.en_US
dc.description.sponsorshipIEEE, Huawei, Aselsan, NETAS, IEEE Turkey Sect, IEEE Signal Proc Soc, IEEE Commun Soc, ViSRATEK, Adresgezgini, Rohde & Schwarz, Integrated Syst & Syst Design, Atilim Univ, Havelsan, Izmir Katip Celebi Univen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2018 26Th Signal Processing And Communications Applications Conference (Siu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistributed acoustic sensingen_US
dc.subjectphase-OTDRen_US
dc.subjectdeep learningen_US
dc.subjectconvolutional neural networksen_US
dc.subjectCNNen_US
dc.subjectthreat detectionen_US
dc.subjectthreat classificationen_US
dc.subjectreal-time processingen_US
dc.titleReal Time Classification Analysis in Distributed Acoustic Sensing Systemsen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conferenceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.authorid0000-0001-9674-938X-
dc.identifier.wosWOS:000511448500535en_US
dc.identifier.scopus2-s2.0-85050803593en_US
dc.institutionauthorAkgün, Toygar-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference26th IEEE Signal Processing and Communications Applications Conference (SIU)en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

54
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.